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ABSTRACT
BACKGROUND: Major depressive disorder (MDD) is a leading cause of disease-associated disability, with much of
the increased burden due to psychiatric and medical comorbidity. This comorbidity partly reflects common genetic
influences across conditions. Integrating molecular-genetic tools with health records enables tests of association
with the broad range of physiological and clinical phenotypes. However, standard phenome-wide association
studies analyze associations with individual genetic variants. For polygenic traits such as MDD, aggregate
measures of genetic risk may yield greater insight into associations across the clinical phenome.
METHODS: We tested for associations between a genome-wide polygenic risk score for MDD and medical and
psychiatric traits in a phenome-wide association study of 46,782 unrelated, European-ancestry participants from
the Michigan Genomics Initiative.
RESULTS: The MDD polygenic risk score was associated with 211 traits from 15 medical and psychiatric disease
categories at the phenome-wide significance threshold. After excluding patients with depression, continued
associations were observed with respiratory, digestive, neurological, and genitourinary conditions; neoplasms; and
mental disorders. Associations with tobacco use disorder, respiratory conditions, and genitourinary conditions
persisted after accounting for genetic overlap between depression and other psychiatric traits. Temporal analyses
of time-at-first-diagnosis indicated that depression disproportionately preceded chronic pain and substance-
related disorders, while asthma disproportionately preceded depression.
CONCLUSIONS: The present results can inform the biological links between depression and both mental and sys-
temic diseases. Although MDD polygenic risk scores cannot currently forecast health outcomes with precision at the
individual level, as molecular-genetic discoveries for depression increase, these tools may augment risk prediction for
medical and psychiatric conditions.

https://doi.org/10.1016/j.biopsych.2022.06.004
Lifespan gains have stalled in many countries, since even
before the COVID-19 pandemic. Between 2011 and 2017,
multiple developed nations, including the United States, had
lower gains in life expectancy than in prior years (1). This
concerning trend amplifies the need to detect groups at high
risk for poor health outcomes and implement early prevention
strategies.

Depression is a strong target for prevention efforts to extend
life expectancy. Depression is a leading cause of disease-
associated disability (2), and the burden of disease due to
depression encompasses not only psychiatric comorbidity but
also medical comorbidity. Major depressive disorder (MDD) is
associated with medical conditions including cardiovascular
disease, diabetes, chronic lung disease, and cancer (3–6).
These associations may arise through multiple mechanisms:
depression may increase risk for poor physical health [e.g., via
inflammation (7)], individuals with depression may engage in
poor health behaviors and have difficulty accessing good
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medical care (8,9), and medical conditions may act as
stressors to precipitate depression (10,11). Associations be-
tween depression and medical diseases also reflect shared
genetic influences. Approximately 30% to 40% of the variation
in major depression is attributable to genetic factors (12), some
of which may also influence risk for medical conditions
including cardiovascular disease (13–16), though findings are
mixed (17,18).

Integration of molecular-genetic tools with electronic health
records (EHRs) has enabled new approaches to test gene-
disease associations. EHRs facilitate tests of association
with the broad spectrum of physiological and clinical pheno-
types. Standard phenome-wide association studies (Phe-
WASs) analyze associations with individual genetic variants.
For polygenic traits such as MDD, aggregate measures of
genetic risk–including polygenic risk scores (PRSs)–may yield
greater insight into associations across the clinical phenome
(19–24). Such prediction efforts could yield at least 3 benefits.
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First, testing associations between MDD-PRSs and the phe-
nome can differentiate shared and distinct pathways of genetic
association across diseases. Second, quantifying relations
between MDD-PRSs and diagnoses from real-world clinical
settings can help determine to what degree molecular-genetic
measures might be used for risk prediction and stratification
clinically (25). Third, depression and other mental disorders
tend to emerge in adolescence and young adulthood, while
noninfectious physical diseases and neurodegenerative con-
ditions peak later in life (26). If genetic predisposition to
depression is associated with physical diseases, early
screening and prevention among individuals at high genetic
risk for depression might benefit later-life—not just early-life—
health. In this study, we leveraged genome-wide polygenic
scores derived from a genome-wide meta-analysis of MDD
(27) and EHR data on 46,782 individuals to test for associa-
tions between genetic liability to depression and the medical
and psychiatric phenome.

To differentiate PRS associations driven by the primary trait
diagnosis from independent associations arising through ge-
netic risk, we conducted an exclusion PRS PheWAS (28)
removing patients with a depression diagnosis and a second
exclusion PheWAS removing patients with any psychological
or developmental/behavioral disorder [to account for genetic
overlap between depression and other psychiatric disorders
(29,30)]. We leveraged the EHRs’ time-stamped data to
analyze the temporal order of diagnoses associated with the
MDD-PRS in the first exclusion PheWAS, to determine whether
they tended to predate or occur after depression. Different
temporal sequences can provide insight into whether gene-
disease associations might reflect processes beyond genetic
overlap (e.g., causal pathways or diagnostic and social factors
that influence the timing of diagnoses).

METHODS AND MATERIALS

Michigan Genomics Initiative Cohort

The Michigan Genomics Initiative (MGI) is a longitudinal bio-
repository effort enriched for patient genome-wide data and
electronic health information (28). Participants were recruited
through Michigan Medicine while awaiting diagnostic or
interventional procedures either during a preoperative visit
prior to the procedure or on the day of procedure that required
anesthesia. Opt-in written informed consent was obtained. In
addition to coded biosamples and protected secure health
information, participants understood that all EHRs, claims, and
national data-sources linkable to the participant may be
incorporated into the MGI databank. Each participant donated
a blood sample for genetic analysis and underwent baseline
vital signs and a comprehensive history and physical assess-
ment. Data were collected according to Declaration of Helsinki
principles. Written consent forms and study protocols were
reviewed and approved by the University of Michigan Medical
School Institutional Review Board. Here, we report results
obtained from 46,782 genotyped, unrelated European-
ancestry samples with available integrated EHR data,
recruited through the standard MGI study and 3 substudies
contributing to the MGI databank: Metabolism, Endocrinology
and Diabetes, Michigan Predictive Activity and Clinical Tra-
jectories Study, and Mental Health Biobank.
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Genotyping, Quality Control, and Imputation

DNA from 56,984 blood samples was genotyped on 2
batches of customized Illumina Infinium CoreExome-24 bead
arrays (Illumina, Inc.) (n1 = 19,931, n2 = 37,053) [see
(28,31,32) for array descriptions]. Complete details of
quality-control procedures identifying and reducing potential
batch effects are described in (28,33). Principal components
(PCs) and ancestry were estimated by projecting all geno-
typed samples into the space of the principal components
of the Human Genome Diversity Project reference panel
using PLINK (34,35). Only patients of inferred recent Euro-
pean descent were included. Pairwise kinship was assessed
using KING (36). FastIndep was used to reduce the data to
a maximal subset that contained no pairs of individuals with
third- or closer-degree relationship (37). Additional geno-
types were obtained using the Haplotype Reference Con-
sortium reference panel using the Michigan Imputation
Server (38) and included over 24 million imputed variants
with R2 . 0.3 and minor allele frequency . 0.1%. After
further restricting the data to subjects with complete diag-
nosis and age information, our analytic sample comprised
46,782 individuals.

Phenome Generation

The MGI phenome was based on ICD-9 and ICD-10 codes. A
total of 32,706 ICD codes were aggregated to PheWAS trait
codes (phecodes) using the PheWAS R package (39). ICD-9
codes were aggregated using ICD-9 Phecode Map 1.2
(40–42). ICD-10 codes were aggregated using ICD-10-CM
Phecode Map 1.2 beta (43,44). Phecodes are organized hier-
archically, with parent phecodes comprising subgroups of
child phecodes that enable ascertainment of traits at different
levels of detail (45). For each phecode, we identified cases as
individuals who had at least 1 assignment of that code in their
records, and controls as the remaining individuals who did not
have any assignment of overlapping phecodes defined by the
exclusion criteria (41–44). For example, we excluded cases
with overlapping phecodes ranging from 295 to 306.99 when
generating controls for MDD (phecode 296.22). To minimize
differences in age and sex distributions or extreme case-
control ratios and to reduce computational burden, for each
trait, we matched up to 10 controls to each case using the R
package MatchIt (39,46). Nearest-neighbor matching was
applied for age and PC1-4 (Mahalanobis-metric matching;
matching-window caliper/width = 0.25 SDs) and exact
matching was applied for sex and genotyping batch. We
excluded phecodes with #50 cases. In total, 1814 case-
control studies were generated, of which 1685 with .50
cases were used for analyses.

PRS Construction

We obtained genome-wide association study (GWAS) sum-
mary statistics for MDD from a meta-analysis of the Psychiatric
Genomics Consortium MDD phase 2, UK Biobank, and
23andMe containing 246,363 cases and 561,190 controls of
European ancestry (27). We reduced these summary statistics
from 10.5 million single nucleotide polymorphisms (SNPs) to
1.1 million nonambiguous SNPs reported with minor allele
frequency .1% and overlapping with Haplotype Reference
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Table 1. Sample Characteristics (N = 46,782)

Characteristic Analytic Sample

Females, n (%) 24,454 (52.3%)

Age, Years, Mean (SD) 56.7 (16.4)

Number of Unique ICD Codes 32,706

Number of Unique Phecodes 1685

Median Number of Days Between
First and Last Visit

2261

Individuals With Major Depressive
Disorder, n (%)

13,850 (29.6%)
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Consortium-imputed MGI data and the European-ancestry
linkage disequilibrium reference panel of PRS-CS (https://
github.com/getian107/PRScs).

For PRS calculation we used PRS-CS-auto (47), a method
that uses a high-dimensional Bayesian regression framework
with continuous shrinkage priors that infers posterior effect
sizes of SNPs while avoiding overfitting and enables automatic
learning of the global shrinkage parameter from GWAS sum-
mary statistics. Each participant’s MDD-PRS was then calcu-
lated using the R package Rprs (https://github.com/statgen/
Rprs), which takes variant lists and weights from PRS-CS
output and the allele dosages of the Haplotype Reference
Consortium-imputed MGI data.

PheWAS Analyses

For each of the 1685 phenome disease traits, we fit a Firth
bias-corrected logistic regression model adjusting for age, sex,
genotyping batch, and recruitment study:

Logit (P[Disease = 1 | MDD-PRS, Age, Sex, Batch, Study, PC1-
PC4]) = b0 1 bPRS MDD-PRS 1 bAgeAge 1 bSexSex 1
bBatchBatch 1 bStudyStudy 1 bPC (PC1, .., PC4),

where bPRS estimates the association between the MDD-PRS
and the trait. The p value corresponding to tests of H0: bPRS =
0 was used to estimate the significance of this association.
Bonferroni-correction resulted in a significance threshold of
p , 3.2 3 1025 (x0.05/1685).

To help differentiate MDD-PRS associations driven by
shared genetics from those driven by the primary depression
diagnosis, we performed an exclusion PRS PheWAS (28)
excluding patients with a depression diagnosis (phecode
296.2). To determine whether MDD-PRS associations were
explained by shared genetic architecture between depres-
sion and other psychiatric conditions, we performed an
additional exclusion PheWAS excluding patients with any
psychological or developmental/behavioral disorder (phec-
odes 295–306.99).

Statistical analyses were performed using R version 4.1.1 (R
Foundation for Statistical Computing; https://www.r-project.
org/).

Temporal Analysis

We conducted a temporal analysis of diseases that had the
strongest positive associations with the MDD-PRS in the
depression-specific exclusion PheWAS, using patient-level
data on date of first diagnosis within the full PheWAS sam-
ple. For each disease (among patients with diagnoses of both
MDD and that disease), we plotted horizontal bars indicating
each patient’s time of first trait diagnosis relative to time of
first MDD diagnosis, in months, and counted the total
numbers of patients who received their first non-MDD diag-
nosis later than, within 1 month of, or earlier than their first
MDD diagnosis.

RESULTS

Sample Characteristics

This study included 46,782 unrelated individuals of European
ancestry (52.3% female, mean age = 56.7 years [SD = 16.4]
B

(Table 1). For MDD (phecode 296.22), there were 13,850 cases
and 20,853 matched controls (Table 1). Its parent trait,
depression (phecode 296.2), had 14,833 cases and 20,856
matched controls. The MDD-PRS explained 1.2% to 2.2% of
the variance in MDD (pseudo-R2 = 0.012 [McFadden], 0.022
[Nagelkerke]).

MDD-PRS PheWAS

The MDD-PRS was associated with 211 traits from 15 disease
categories at the Bonferroni-corrected significance threshold
p , 3.2 3 1025 (Figure 1; Table S1 in Supplement 2; Figure S1
in Supplement 1). Of the top 50 traits, 18 were in the mental
disorder category and 32 were in nonpsychiatric categories.
MDD showed the strongest association (odds ratio [OR] = 1.31
[1.28–1.35], p = 1.7 3 102120). Of the nonpsychiatric diseases,
the strongest associations in the digestive, neurological, res-
piratory, musculoskeletal, circulatory-system, and symptoms
categories were observed for gastroesophageal reflux disease
(OR = 1.15 [1.13–1.17], p = 2.8 3 10241), other headache
syndromes (OR = 1.15 [1.12–1.17], p = 2.2 3 10228), chronic
bronchitis (OR = 1.19 [1.15–1.23], p = 1.3 3 10224), osteo-
arthrosis, not otherwise specified (OR = 1.10 [1.08–1.12], p =
2.3 3 10219), nonspecific chest pain (OR = 1.09 [1.06–1.11],
p = 8.8 3 10215), and back pain (OR = 1.10 [1.07–1.12], p =
1.4 3 10219), respectively. The MDD-PRS was negatively
associated with benign neoplasm of lymph nodes (OR = 0.94
[0.91–0.97], p = 1.2 3 1025) in the neoplasms category
(Table S1 in Supplement 2; Figure S1B in Supplement 1).

Exclusion PRS PheWAS

We conducted an exclusion PheWAS excluding the 14,833
patients with a depression diagnosis (parent phecode 296.2,
which includes the child phecode MDD [296.22]) (Table S1 in
Supplement 2). An additional 117 phecodes were excluded
because the number of cases dropped below 50, resulting in
1566 traits for analysis. The MDD-PRS was associated with 25
traits from 6 disease categories at the Bonferroni-corrected
significance threshold p , 3.2 3 1025 (Figure 2; Table S1 in
Supplement 2; Figure S1 in Supplement 1). These categories
included mental disorders; digestive, neurological, respiratory,
and genitourinary diseases; and neoplasms. For the 25 traits,
the effect sizes (unstandardized regression coefficients) for the
exclusion-PheWAS associations were on average 73% of the
effect sizes for the full-PheWAS associations (range =
0.52–1.18) (Table S1 in Supplement 2). Figure S1 in
Supplement 1 shows the change in OR.
iological Psychiatry - -, 2022; -:-–- www.sobp.org/journal 3
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Figure 1. Phenome-wide association of the major depressive disorder polygenic risk score. The figure shows the2log10 (p values) for associations between
the major depressive disorder polygenic risk score and the phecodes for 1685 disease traits, grouped by 17 color-coded categories. Directional triangles
indicate the direction of association. The yellow dashed line indicates a significance threshold of p = .05. The red dashed line indicates the Bonferroni-
corrected phenome-wide significance threshold (2log10 [p value] = 4.5). Traits with the strongest association within each category are labeled. GERD,
gastroesophageal reflux disease; NOS, not otherwise specified.

Polygenic Liability to Depression and Medical Diseases
Biological
Psychiatry
A total of 8 mental disorder traits remained significantly
associated with the MDD-PRS in the exclusion PheWAS:
anxiety disorders (OR = 1.15 [1.12–1.19], p = 1.9 3 10219),
anxiety disorder (OR = 1.15 [1.12–1.19], p = 3.1 3 10218),
generalized anxiety disorder (OR = 1.16 [1.09–1.23], p = 7.5 3

1027), tobacco use disorder (OR = 1.09 [1.06–1.13], p = 6.1 3

1028), posttraumatic stress disorder (OR = 1.53 [1.29–1.82],
p = 8.2 3 1027), bipolar disorder (OR = 1.40 [1.21–1.61],
p = 2.9 3 1026), dysthymic disorder (OR = 1.33 [1.17–1.51],
p = 1.1 3 1025), and substance addiction and disorders
(OR = 1.13 [1.07–1.19], p = 2.1 3 1025) (Table S1 in
Supplement 2; Figure S1E in Supplement 1).

Of the nonpsychiatric diseases, the traits showing the
strongest associations in the exclusion PheWAS were
gastroesophageal reflux disease (OR = 1.09 [1.06–1.12], p =
6.2 3 10211) in the digestive diseases, other headache syn-
dromes (OR = 1.09 [1.05–1.12], p = 1.4 3 1026) in the neuro-
logical diseases, chronic airway obstruction (OR = 1.12
[1.08–1.17], p = 1.1 3 1028) in the respiratory diseases, cal-
culus of kidney (OR = 1.10 [1.06–1.14], p = 5.9 3 1028) in
the genitourinary diseases, and benign neoplasm of skin
(OR = 0.94 [0.91–0.96], p = 2.3 3 1026) in the neoplasms. Two
other neoplasm traits—benign neoplasms of lymph nodes and
unspecified sites—were also negatively associated with the
MDD-PRS in the exclusion PheWAS (Table S1 in
4 Biological Psychiatry - -, 2022; -:-–- www.sobp.org/journal
Supplement 2; Figure S1B in Supplement 1). The largest pro-
portion of negative associations within each disease category
(regardless of statistical significance) was observed for the
neoplasms (81.9%) (Table S2 in Supplement 1).

We conducted a second exclusion PheWAS excluding the
26,329 patients with any psychological or developmental/
behavioral disorder (43 phecodes: 295–315.99). After further
excluding phecodes with,50 cases, 1355 traits were available
for analysis. The MDD-PRS was associated with 7 traits from 3
disease categories at the Bonferroni-corrected significance
threshold p , 3.2 3 1025, all of which were also significant in
the depression-specific exclusion PheWAS: tobacco use dis-
order (OR = 1.11 [1.06–1.16], p = 2.2 3 1026) in the mental
disorders; chronic airway obstruction (OR = 1.14 [1.08–1.20],
p = 8.4 3 1027), asthma (OR = 1.10 [1.06–1.15], p = 5.6 3

1026), chronic bronchitis (OR = 1.15 [1.08–1.22], p = 6.4 3

1026), and obstructive chronic bronchitis (OR = 1.15
[1.08–1.22], p = 1.3 3 1025) in the respiratory diseases; and
calculus of kidney (OR = 1.11 [1.06–1.16], p = 4.6 3 1026) and
urinary calculus (OR = 1.10 [1.05–1.15], p = 1.7 3 1025) in the
genitourinary diseases (effect sizes for significant traits =
114% of those in the depression-specific exclusion PheWAS,
on average [range = 1.09–1.22]) (Figure S2 in Supplement 1).
Gastroesophageal reflux disease continued to show the
strongest association within the digestive diseases, though the
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Figure 2. Phenome-wide association of the major depressive disorder polygenic risk score, excluding patients with a depression diagnosis. The figure
shows the 2log10 (p values) for associations with the major depressive disorder polygenic risk score, after removing patients with depression (phecode 296.2,
which includes major depressive disorder [phecode 296.22]). Phecodes for which the number of cases dropped below 50 (n = 117) were also excluded,
resulting in a total of 1566 disease traits for analysis. The traits are grouped by 17 color-coded categories. Directional triangles indicate the direction of
association. The yellow dashed line indicates a significance threshold of p = .05. The red dashed line indicates the Bonferroni-corrected significance threshold
(2log10 [p value] = 4.5). The 20 traits with the strongest associations are labeled. GERD, gastroesophageal reflux disease.
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association did not reach phenome-wide significance (OR =
1.07 [1.04–1.11], p = 4.1 3 1025, effect size = 83% of that in
the depression-specific exclusion PheWAS) (Figure S2 in
Supplement 1).
Temporal Analysis

We analyzed the temporal associations between MDD and
traits that showed evidence of genetic overlap with depres-
sion. Within the full PheWAS sample, we selected the 12 top
parent phecodes for traits with the strongest positive associ-
ations with the MDD-PRS in the depression-specific exclusion
PheWAS and plotted their time at first diagnosis relative to the
time at first diagnosis for MDD (Figure 3). Several diagnoses
tended to disproportionately succeed or precede depression;
nearly 3 times as many patients received their first chronic pain
diagnosis and over twice as many received their first sub-
stance addiction and disorders diagnosis after their first MDD
diagnosis than before (Figure 3C, F). By contrast, over twice as
many patients received their first asthma diagnosis before their
first MDD diagnosis (Figure 3H). The distributions of time at
first diagnosis for the traits relative to MDD deviated signifi-
cantly from the average distributions of time at first diagnosis
B

for all other nonoverlapping phecodes relative to MDD
(Table S3 in Supplement 2).

The patterns we observed might reflect differences in age of
onset. However, age at first diagnosis for the 12 traits was not
associated with the proportion of cases diagnosed before or
after MDD (p = .58 and .95, respectively). In addition, for 11 of
the 12 traits, the difference in median age at first diagnosis
between the trait and MDD was shorter among patients with
both diagnoses, relative to those with only MDD or the trait. For
all 12 traits, patients who also had an MDD diagnosis showed
an earlier age at first diagnosis of the trait than those without
an MDD diagnosis (Table S3 in Supplement 2). These findings
suggest that factors beyond age of onset may help to explain
these diseases’ temporal sequencing.

We evaluated whether 2 psychiatric conditions that share
genetic architecture with depression (anxiety disorder and
attention-deficit/hyperactivity disorder [ADHD]) showed a
similar pattern to MDD in their temporal sequencing with traits
with evidence of genetic overlap with depression (those in
Figure 3). Anxiety disorder and ADHD tended to show a similar
pattern to MDD; across all traits (excluding anxiety disorder),
79% (62%) of patients, on average, received both their first
anxiety disorder and their first MDD diagnosis before, after, or
iological Psychiatry - -, 2022; -:-–- www.sobp.org/journal 5
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Figure 3. Temporal order of diagnoses. The plot shows the number of patients who received their first non–major depressive disorder diagnosis earlier (in
blue) and later (in red) than their first major depressive disorder diagnosis, distributed by relative time in months. A modest number of individuals who were
included in the phenome-wide association study analyses are excluded from this plot because they were missing information on date of diagnosis. (A) Bipolar
disorder. (B) Anxiety disorders. (C) Substance addiction and disorders. (D) Tobacco use disorder. (E) Sleep disorders. (F) Chronic pain. (G) Other headache
syndromes. (H) Asthma. (I) Chronic airway obstruction. (J) Gastroesophageal reflux disease. (K) Irritable bowel syndrome. (L) Calculus of kidney.

Polygenic Liability to Depression and Medical Diseases
Biological
Psychiatry
within 1 month of the other trait. For ADHD, this number was
72% (63%).
DISCUSSION

In this PheWAS of over 46,000 individuals, we found that a
genome-wide polygenic score for MDD was associated with
multiple medical and psychiatric conditions in the EHR. After
excluding patients with depression, continued associations
were observed with respiratory, digestive, neurological, and
genitourinary conditions; neoplasms; and mental disorders.
Associations with tobacco use disorder, respiratory condi-
tions, and genitourinary conditions persisted after account-
ing for genetic overlap between depression and other
psychiatric traits. Temporal analyses indicated variation
across conditions in their distributions of time at first diag-
nosis relative to MDD.

Our analysis has strengths. First, we used a well-powered
study cohort and generated the MDD-PRS using a method
with a flexible modeling assumption that adaptively approxi-
mates the true effect-size distribution (48). Second, our
exclusion-PheWAS approach allowed us to isolate genetically
mediated associations from those driven by depression or
related psychiatric diagnoses or bias in the EHR data. Although
this approach reduces sample size, it is statistically preferable
to controlling for the primary trait (28). Third, EHRs’ temporal
6 Biological Psychiatry - -, 2022; -:-–- www.sobp.org/journal
data have received limited attention in prior psychiatric PRS
PheWASs. Leveraging these data enabled us to further inter-
rogate gene–disease associations.

Associations were observed across both exclusion Phe-
WASs between the MDD-PRS and respiratory diseases
including asthma, chronic airway obstruction (also termed
chronic obstructive pulmonary disease), chronic bronchitis, and
obstructive chronic bronchitis. Prior work has demonstrated
prospective relations between mental disorders including
depression with chronic obstructive pulmonary disease in
representative cohorts (49) and complete populations (50), and
previous MDD-PRS PheWASs have also identified associations
with respiratory conditions (22,23), with evidence that MDD may
be a causal risk factor for asthma (22). Our exclusion analyses
suggest that associations between MDD and several respiratory
diseases are at least in part genetically driven and not driven
solely by the primary depression diagnosis or genetically related
psychiatric conditions. Our exclusion PheWAS also revealed
associations with diseases that are in nonrespiratory categories
but are related to the respiratory system, including tobacco use
disorder, which has been identified as a top association in a
previous MDD-PRS PheWAS (23).

Consistent with prior PRS PheWASs of MDD (22) and
schizophrenia (23,25), our full PheWAS uncovered significant
associations with genitourinary conditions. Many of these as-
sociations became nonsignificant in the exclusion PheWAS,
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indicating that they may arise as a function of the depression
diagnosis. For instance, genitourinary problems are a side effect
of some antidepressants (51,52). Exceptions were calculus of
kidney and urinary calculus, suggesting genetic correlations
with MDD. Though requiring replication, these novel associa-
tions suggest variation in the mechanisms linking genetic lia-
bility to depression with different urinary-system disorders.

Prior quantitative-genetic and molecular-genetic studies
have identified anxiety and bipolar disorders as among the
psychiatric disorders with the strongest genetic correlations
with MDD (53–55). Anxiety disorders and bipolar disorder
emerged as top hits in our depression-specific exclusion
PheWAS, corroborating prior findings and showing that these
genetic correlations extend to diagnoses in the clinical
phenome.

Negative associations emerged with benign neoplasms of
lymph nodes, skin, and unspecified sites in our depression-
specific exclusion PheWAS. Furthermore, when considering
all associations in the depression-specific exclusion analysis—
regardless of statistical significance—the largest proportion of
negative associations was in the neoplasms category. How-
ever, neoplasm associations did not remain significant after
accounting for genetic overlap between depression and other
psychiatric traits. A prior PheWAS (23) found a negative as-
sociation between an ADHD-PRS and benign neoplasm of
skin, providing additional evidence that the neoplasm associ-
ations we observed may be attributable at least in part to ge-
netic influences shared between MDD and related psychiatric
conditions, including ADHD. Systematic reviews and meta-
analyses of depression and cancer indicate a positive asso-
ciation in the population (56,57). Our results suggest that
depression and neoplasms may be positively associated at the
phenotypic level, but—similar to the negative genetic associ-
ation between neurodegenerative disease and cancer (58)—
the genetic predisposition to depression or related psychiat-
ric conditions may predispose to less cancer. More work is
needed to clarify these associations’ robustness and their
specificity across psychiatric conditions.

Relative to prior MDD-PRS EHR PheWASs (21–24), we
observed associations across a broader range of disease
categories in our full PheWAS, including novel associations in
2 categories (neoplasms and neurological disorders) that
remained significant in our depression-specific exclusion
PheWAS. This may reflect differences in sample size or vari-
ants included in the PRS; prior MDD-PRS EHR PheWASs have
used smaller sample sizes (21,23,24) or selected only the top
GWAS variants to construct their PRS (22), which may intro-
duce information loss (59).

The temporal ordering of diagnoses provides insights into
potential prevention opportunities. We found that a dispro-
portionate number of individuals were first diagnosed with
depression prior to chronic pain and substance addiction and
disorders, suggesting that some of the genetic risk for pain and
addiction may operate through depressive mechanisms, and
ameliorating depression might also ameliorate risk for these
disorders. Conversely, a disproportionate number of in-
dividuals were first diagnosed with asthma prior to depression,
suggesting that mitigating asthma symptoms may also miti-
gate risk for depression. Our data cannot resolve causality, and
other mechanisms may help to explain disorders’ temporal
B

sequencing, including variations in diagnostic criteria, greater
hesitancy to seek treatment for psychiatric conditions than
physical health conditions because of concerns about stigma,
and age of onset differences (although analyses suggested
these differences could not fully explain observed temporal
patterns). Depression and temporally antecedent or subse-
quent conditions may also be indicators of a broader disease
progression process. Our findings suggest causal hypotheses
that could be tested in future Mendelian-randomization studies
and randomized clinical trials.

These findings have additional implications. First, results of
our exclusion PheWAS indicate that polygenic liability to MDD
predicts risk for medical conditions regardless of whether in-
dividuals meet depression diagnostic thresholds. This sug-
gests that molecular-genetic measures of depression risk may
be informative for all patients. Furthermore, depression and
other mental disorders tend to onset in adolescence and
young adulthood, while noninfectious physical diseases peak
in mid to late life (26). Early screening among young people at
high genetic risk for depression might yield insights into their
longer-term risk for poor physical health. However, it is
important to note that the MDD-PRS is not currently sensitive
or specific enough to forecast health outcomes with precision
at the individual level. MDD-PRSs will need to differentiate
cases from controls with greater accuracy before they can be
used clinically.

Second, our findings can inform etiologic research. GWASs
of depression and other phenotypes prioritize selection of
cases who represent the disorder of interest, and often apply
exclusion criteria for other conditions. However, our results
suggest that MDD genetic-discovery efforts may be enhanced
by increasing representation within GWAS samples of in-
dividuals also diagnosed with associated health conditions, in
particular, conditions for which associations are genetically
driven. The predictive power of PRSs for depression [and for
other psychiatric disorders (23)] may be increased by including,
in GWAS samples, individuals who represent a broader range
of associated diseases.

Third, our results highlight opportunities for interdisciplinary
research. We have shown that molecular-genetic risk for
depression is associated with physical-disease diagnoses in
clinical records. An important next step is to identify the phe-
notypes that connect polygenic liability to depression to poor
physical health across development. Such work will require
integrating molecular-genetic tools within prospective cohort
studies (60) and collaborative cross talk between researchers
and clinicians in developmental science, genomics, psychiatry,
and geriatric medicine.

Fourth, of the 1685 phenotypes analyzed, only 12.5% were
significant in the full PheWAS, substantially lower than the
number of phenotypes with which depression co-occurs. This
reinforces the importance of identifying environmental as well
as genetic mechanisms of comorbidity. It should be noted,
however, that the number of cases varied substantially across
conditions (full PheWAS: range = 51–23,317). Thus, our study
cannot rule out genetic associations for rare conditions for
which analyses may have been underpowered.

We acknowledge limitations. First, analyses were restricted
to European-ancestry participants because of limited GWAS
summary statistics for other populations. GWASs conducted in
iological Psychiatry - -, 2022; -:-–- www.sobp.org/journal 7
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more diverse samples will facilitate polygenic prediction
among non-European-ancestry individuals. Second, the MGI is
not a population-based sample. However, its medical-center-
based ascertainment strategy is a compromise for access to
EHR data. Although MGI participants are on average less
healthy than the general population, this introduces a
statistical-power advantage for PheWASs because the cohort
is enriched for medical-disease cases (32). Third, potential
biases in medical record data include phenotype misclassifi-
cation and availability of data for only part of the life span. The
EHRs in this study comprised a median of 6.2 years of data per
person; we could not ascertain diagnoses made outside this
window or in different health systems. Fourth, although the
MGI EHRs integrate information about depression diagnoses
made across primary care, outpatient treatment, and inpatient
treatment, our analysis does not include depression diagnoses
among individuals who are not assessed for depression during
a health care contact. Thus, our exclusion analyses likely did
not rule out all individuals with depression.

Polygenic liability to MDD provides a window into both
mental and physical health. Our results can inform MDD ge-
netic discovery efforts as well as developmental and epide-
miologic research linking genomic risk for depression to
physical diseases. MDD-PRSs cannot yet accurately forecast
health outcomes at the individual level. However, as molecular-
genetic discoveries for depression increase, these tools may
become a useful component of risk prediction for both medical
and psychiatric conditions.
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