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SUMMARY
In a genome-wide association study (GWAS) meta-analysis of 688,808 individuals with major depression
(MD) and 4,364,225 controls from 29 countries across diverse and admixed ancestries, we identify 697 asso-
ciations at 635 loci, 293 of which are novel. Using fine-mapping and functional tools, we find 308 high-con-
fidence gene associations and enrichment of postsynaptic density and receptor clustering. A neural cell-type
enrichment analysis utilizing single-cell data implicates excitatory, inhibitory, andmedium spiny neurons and
the involvement of amygdala neurons in both mouse and human single-cell analyses. The associations are
enriched for antidepressant targets and provide potential repurposing opportunities. Polygenic scores
trained using European or multi-ancestry data predicted MD status across all ancestries, explaining up to
5.8% of MD liability variance in Europeans. These findings advance our global understanding of MD and
reveal biological targets that may be used to target and develop pharmacotherapies addressing the unmet
need for effective treatment.
INTRODUCTION

Major depression (MD) is a leading cause of worldwide disability

and affects approximately 15% of the global population during

their lifetime. The peak age of onset is in early adulthood, and

the disorder is typically recurrent or chronic in nature, often

with persisting disability despite pharmacological and psycho-

logical therapies. Twin and family-based studies provide evi-

dence of a significant genetic contribution to its etiology, with a

heritability of approximately 37%.1 Since 2013, genome-wide

association studies (GWASs) have provided major insights into

the polygenic nature of MD, its genetic risk factors, and underly-

ing mechanisms.2–9 The largest study conducted to date

reported 243 independent MD risk loci from a meta-analysis of

the Million Veteran Program (MVP), 23andMe, UK Biobank,

FinnGen, and iPSYCH, including 371K cases.10

Despite these efforts, themolecular, cellular, and neurobiolog-

ical mechanisms of MD remain largely unidentified, limiting the

development of disease models and mechanism-informed

drug treatments.11 In this study, we report results from the Psy-

chiatric Genomics Consortium (PGC) Major Depressive Disorder

Working Group’s largest GWAS meta-analysis of MD to date

(currently the largest GWAS study of any psychiatric disorder).

We used strategies designed for the analysis of multi-ancestry

and admixed populations to implement the largest, most inclu-

sive study of MD genetics. These results substantially extend

previous GWAS findings, implicating genes, cell types, and tis-
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sues in the etiology of MD, and demonstrate out-of-sample pre-

diction across diverse ancestry groups.

RESULTS

The GWAS and subsequent downstream bioinformatic and pre-

dictive testing analyses are summarized in Figure 1.

GWAS meta-analysis
We meta-analyzed GWAS summary statistics from 109 ances-

trally diverse cohort datasets with 688,808 MD cases and

4,364,225 controls (see STAR Methods, Table S1, Methods

S1, and see key resources table). These studies had power

equivalent to a case-control study of 1,004,459 cases and

1,004,459 controls, with 23% in diverse/non-European ances-

tries (Table 1). For cohorts with diverse ancestries, associations

were assessed using tools that explicitly model population

structure, admixture, and relatedness (GENESIS). For a subset

of cohorts with ancestrally diverse samples, we compared the

sample size using the commonly used strategy of assigning in-

dividuals into ancestry groups followed by logistic regression

(N = 24,859) to our joint approach (N = 47,642) and found a

92% sample size increase. Our final sample size of 163,611

cases and 1,001,890 controls with diverse ancestries (Methods

S1) led to an increase in the discovery of genome-wide signif-

icant loci compared with the European-only ancestry studies

analysis. Using conditional-and-joint GCTA-COJO12 analysis
hed by Elsevier Inc.
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Figure 1. Overview of MD GWAS and downstream analyses

Figure shows the 3 meta-analyses conducted (middle, deeper blue). Predictive testing using polygenic risk scores was conducted using both European and all

ancestries GWAS summary statistics (left-hand side of the figure). Bioinformatic and mechanistic analyses were conducted using European-only GWAS

summary statistics because many of the methods depend on a single suitable linkage equilibrium reference panel, and methods to generalize these approaches

to trans-ancestry summary statistics were still in development at the time of submission.
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with threshold p % 5 3 10�8 within 10 Mb windows for the

combined meta-analysis, we identified 697 significant indepen-

dent single-nucleotide polymorphisms (SNPs) in 635 genomic

regions. About half (293/635; 46%) of the discovered loci

were novel MD associations (Figure 2; see key resources table)

of which 100 were identified due to the inclusion of cohorts with

ancestrally diverse samples. The European-only analysis iden-

tified 622 SNPs in 570 regions with a net change in the full

meta-analysis of 65 (142 regions gained, 77 regions became

non-significant).

In order to carry out downstream analyses, including heritabil-

ity, gene prioritization, enrichment, and genetic correlation, we

performed a fixed-effects meta-analysis for samples of Euro-

pean ancestries (525,197 cases and 3,362,335 controls), using

a large single linkage disequilibrium (LD) reference dataset.
Table 1. Details of diverse ancestry studies included in the

current GWAS

Ancestry group N studies N cases N controls Neff/2

European 76 525,197 3,362,335 788,603

East Asian 7 18,709 349,619 30,654

South Asian 1 3,748 25,934 6,549

African 8 9,649 122,347 17,077

Hispanic/Latin

American

5 22,927 340,403 41,233

Multiple/mixed 12 108,578 163,587 120,342

All ancestries 109 688,808 4,364,225 1,004,459
The consequences of MD phenotyping on the meta-analyses

were examined using genomic structural equation modeling

(SEM) with a common-factor meta-analysis of the European

ancestry summary statistics in genomic SEM13 (Figure S1). Co-

horts were first meta-analyzed based on how the MD phenotype

was determined: clinical/interview, electronic health record

[EHR], questionnaire, or self-report of MDdiagnosis. The propor-

tion of total effective sample size contributed by each phenotype

definition was 4% clinical/interview, 54% EHR, 14% question-

naire, and 27% self-report. The different phenotype definitions

of MD had strong genetic correlations (LD score rg from 0.78 to

0.88). We fitted a common-factor model in genomic SEM and

set the clinical/interview phenotype as the primary phenotype

by fixing its factor loading to 1 and its residual variance to 0.

This factor model was consistent with the data (c2
3 = 4.49, p =

0.213); therefore, we could not reject the null hypothesis that a

single factor capturing all the variance of the primary method ex-

plained the intercorrelations between the other depression phe-

notypes. Most MD phenotypes had strong positive loadings on

the common factor (clinical/interview = 1.0 [reference], EHR =

0.92 ± 0.04, questionnaire = 0.95 ± 0.04), although the loading

for self-reported diagnosis was lower (self-report loading =

0.85 ± 04). One locus showed significant SNP heterogeneity be-

tween phenotyping definitions (rs12124523 intronic variant in

NEGR1, common factor association p = 8.4 3 10�14, Q hetero-

geneity p = 2.9 3 10�10, I2 = 0.71) with a stronger association

found in self-reported depression studies (self-report odds ratio

[OR] = 1.081, confidence interval [CI] = 1.065–1.098; other co-

horts OR = 1.008, CI = 0.999–1.018). We found no evidence of
Cell 188, 640–652, February 6, 2025 641
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Figure 2. Manhattan plot of GWAS meta-analysis of 688,808 MD cases and 4,364,225 controls

Manhattan plot displaying the significance of each SNP’s association with MD across the genome (vertical axis shows�log10 p value). Chromosomal position of

each SNP is shown on the horizontal axis. The horizontal line at 7.3 (�log10(5 3 10�8)) indicates the genome-wide statistical significance threshold.
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heterogeneity at 569/570 loci, supporting the use of multiple

phenotypes in genetic association studies of MD.

SNP-based heritability was estimated in European ancestries

using SBayesS14 at 8.4% (SE 0.07%) on the liability scale

(assuming lifetime MD risk of 15%) similar to prior estimates.4,7

Analyses of the genetic architecture using SBayesS estimated

a polygenicity of 6% and selection parameter of �0.54.

Compared with previously reported estimates for 155 traits,

MD has a relatively higher polygenicity, but its associated vari-

ants are under weaker negative selection.14

Gene prioritization and pathway enrichment analysis
We used a range of methods and functional genomic datasets to

gain insight into the associated variants, genes, and pathways

that may be dysregulated in MD. These included three rigorous

‘‘high-confidence’’ approaches: SNP-based fine-mapping of

MD-associated loci and integration of expression and protein

quantitative trait loci (eQTL and pQTL) to infer genetically driven

MD case-control differences in RNA and protein expression.

These are referred to as transcriptome- and proteome-wide as-

sociation study approaches (TWAS and PWAS) and were re-

ported when summary data-based Mendelian randomization

(SMR), colocalization (COLOC), and expression-based fine-

mapping (of eQTLs and pQTLs, in FOCUS) analyses all aligned
642 Cell 188, 640–652, February 6, 2025
to indicate a common gene. We also mapped associated loci

to genes using standard gene-based association analysis in fast-

BAT, chromatin interaction datasets (Hi-C), and applied a gene

prioritization package, psychiatric omnilocus prioritization score

(PsyOPS) (see STAR Methods).

SNP-based fine-mapping
We undertook functionally informed SNP-based fine-mapping

analyses using the European ancestry GWAS findings, targeting

all autosomal GWAS loci excluding the major histocompatibility

complex (MHC) region. Twenty-four variants showed strong pu-

tative evidence of causality (posterior inclusion probability

[PIP] > 0.95) at IRF4, ESR1, and FURIN (Table S2). Credible ca-

usal set sizes comprising %10 variants (cumulative PIP > 0.95)

were identified at 224 loci, and 234/564 autosomal loci could

be mapped to one or more genes (Table S2).

RNA and protein-expression-based mapping
Both eQTL and pQTL data were used to infer upregulated or

downregulated gene expression (TWAS) or protein (PWAS) levels

associated with MD. Stringent criteria were used to identify high-

confidence associations with MD (STAR Methods). MD genetic

associations were found to correlate and colocalize with cis-

regulated expression of 75 genes (Table S3) and cis-regulated
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levels of 10 proteins (Table S3). Results were only regarded as

high-confidence when altered expression was supported by sig-

nificant SMR and COLOC findings. No gene was identified as

high confidence by both TWAS and PWAS analyses.

Convergent high-confidence gene identification
In total, across SNP-based fine-mapping, eQTL, and pQTL ana-

lyses, 308 high-confidence associations were identified (Table

S8). Fourteen eQTL genes and 1 pQTL gene also identified as

high confidence by SNP-based fine-mapping. For example,

SNP-based fine-mapping found all SNPs in one 95% credible

set were within the cytochrome P450 gene CYP7B1, which

was also inferred to have decreased expression in the dorsolat-

eral prefrontal cortex of individuals with MD (TWAS p = 2.92 3

10�15, COLOC PP4 = 0.939, FOCUS PIP = 1). Additional signals

identified by both fine-mapping and expression-based analyses

included the genes SP4, FURIN, DCC, and the neurotrophin re-

ceptor kinase NTRK3.

Other positional, chromatin-based, and bioinformatic
approaches
Positional mapping approaches were used to identify additional

genes that may be involved in MD etiology, including identifica-

tion of the nearest gene to leadMD variants, aggregating genetic

associations across gene regions using fastBAT (see key re-

sources table), and linking associated loci to genes through

Hi-C chromatin interactions using Hi-C coupled MAGMA (H-

MAGMA) (see key resources table). Furthermore, the gene prior-

itization method PsyOPS was used to score genes based on

prior information on mutational constraint, brain expression,

and involvement in neurodevelopmental disorders (Table S4).

Of the 18,737 genes assessed using fastBAT, 1,568 were asso-

ciated with MD (p < 2.67 3 10�6) with the strongest evidence of

association at the dopamine receptor D2 (DRD2) gene (p =

9.39 3 10�47). DRD2 was also associated with MD by

H-MAGMA in all four brain tissue profiles analyzed (p = 1 3

10�10 to 1 3 10�15). An additional 1,033 genes were also ide-

ntified as associated with MD based on three-dimensional

chromatin data using H-MAGMA. While PsyOPS prioritized a

neighboring gene, NCAM1 (PsyOPS score = 0.402), DRD2 had

an equivalent score (0.399). Other genes with high PsyOPS pri-

oritization scores were PTPRT, SLC12A5, RFX3, ELAVL2,

HCN1, KIF5A, and SHANK3.

Synaptic gene set enrichment
We used the high-confidence gene list from SNP-based fine-

mapping, TWAS, and PWAS (subset of Table S8) to identify en-

riched synapse functions using Synaptic Gene Ontologies

(SynGO).15 The 43 genes from the high-confidence gene list

with SynGO annotations were compared against a background

of 18,035 brain-expressed genes. We replicated earlier findings

from Howard et al.,2 showing enrichment of neuron differentia-

tion processes and postsynaptic membrane components. The

current GWASprovided greatly increased specificity, implicating

the cytosol, active zonemembrane, calcium levels, vesicle cycle,

and presynaptic endocytosis. At the post-synapse, there was

enrichment of synaptic specialization, density, and receptor

clustering (Tables S5A and S5B).
Tissue and cell-type enrichment analysis
We conducted tissue and cell-type enrichment analysis using

published expression datasets including bulk RNA sequencing

data from human tissues16 and single-cell RNA sequencing

data from the adult mouse central and peripheral nervous sys-

tem.17 Across human tissues, we found clearer enrichment pat-

terns of MD SNP-heritability in neural tissues using the current

GWAS association findings than those obtained from the previ-

ous two PGC Major Depressive Disorder (MDD) group analyses

(Figure 3; Tables S5C–S5E). In the adult mouse central and

peripheral nervous system, we found significant enrichment

of MD SNP-heritability in 10 out of 39 cell types with two different

methods (MAGMA and partitioned LD score regression [LDSC];

see key resources table). We confirmed all the cell types identi-

fied in the previous GWAS,7 including both excitatory and inhib-

itory neurons, but implicate multiple additional inhibitory neuron

categories and peptidergic neurons.

Analysis at a more refined level of murine cell types further

emphasized the enrichment in excitatory and inhibitory neurons

in multiple brain regions (key resources table; Tables S5I–S5K).

Associated cell types using both methods included midbrain

(mouse atlas reference: MEGLU7, MEGLU8, MEGLU10, and

MEGLU11), amygdala (TEGLU22), hippocampal (CA1 and TEG

LU21), thalamic (DEGLU4), and cortical (TEGLU1, TEGLU4,

TEGLU8, TEGLU8, TEGLU11, TEGLU13, and TEGLU20) excit-

atory neurons. We also found additional evidence for the involve-

ment of D1/D2 midbrain and striatal medium spiny neurons

(MSN2 by both methods and MSN1,3-4 by MAGMA only).

Furthermore, we performed cell-type enrichment analyses us-

ing a human brain single nucelli RNA sequencing dataset.18 We

found enrichment of expression signals for amygdala excitatory

neurons and of medial ganglionic eminence (MGE) and caudal

ganglionic eminence (CGE) interneurons by both MAGMA and

LDSC. MAGMA also implicated further neuronal cell clusters

as well as oligodendrocyte precursors at the broader cell-type

level (superclusters).

Drug target enrichment analysis
Using Drug Targetor, we searched for therapeutic agents group-

ed according to organ andmode of action using their Anatomical

Therapeutic Chemical (ATC) drug class and identified targets

that were enriched in the association signals from the GWAS

analysis.19 Drug Targetor harnesses drug bioactivity data to pri-

oritize drugs and targets for a given phenotype. Replicating an

earlier analysis, we found the gene targets of antidepressants

(ATC class N06A) are significantly enriched (see key resources

table) in our association findings. Other drug classes that were

significantly enriched included antipsychotics (N05A), which

include some medicines with antidepressant effects.

The gene targets of specific drugs were also enriched in ge-

netic associations with MD, although the analysis does not infer

whether the effects of these agents were more likely to be

congruent or opposed to the effects of genetic risk. The identi-

fied drugs provide possible repurposing opportunities and ex-

amples included several anti-cancer therapies and the agents

pregabalin (used in the management of pain and anxiety) and

modafinil, which is used to treat daytime sleepiness caused by

narcolepsy (Table 2; key resources table).
Cell 188, 640–652, February 6, 2025 643



Figure 3. Broad brain cell category enrichment analysis

Cell-type enrichment analysis. 20 categories of brain cell types are listed (from a total of 39 broad brain cell-type categories tested) along the vertical axis, and

horizontal bar size represents the significance of the enrichment measured using MAGMA gene set enrichment test or partitioned LDSC. Color encodes results

that were significant after false discovery rate correction. Bars in salmon color represent enrichments significant using both methods; green, MAGMA only; blue,

partitioned LDSC only; and purple when neither method showed significant enrichment. 19 broad categories not displayed were not significant using either

method. Columns represent the results of each test using summary statistics from MDD2013, MDD2018, and this study. The dotted line shows threshold of

nominal (uncorrected) statistical significance.

ll
OPEN ACCESS Article
Within- and cross-trait prediction
PGS prediction in European ancestry samples

Using the case-control cohorts in the meta-analysis, we con-

ducted a leave-one-cohort-out GWAS meta-analysis for 42 Eu-

ropean ancestry cohorts that had provided individual-level

data. Polygenic scores (PGSs) were generated in each cohort

using SNP weights for the multi-ancestry and the European

ancestry meta-analyses derived using SBayesR.20 Other PGS

methods, including the standard p value clumping and thresh-

olding, gave similar results (Table S6). Across all European

ancestry cohorts, the variance explained on the liability scale

(r2l Þ was 5.8% (SE 0.2%) (see key tesources table and

Table S6), with an area under the receiver operating character-

istic curve (AUC) statistic of 0.625 (see key resources table).

Adding functional annotations into the algorithm to generate

SNP weights for PGSs (SBayesR) increased prediction accuracy

by 0.1% (i.e., r2l of 5.9%). The r2l wasmore than 1.4 times greater

than that reported in the PGC MDD 2018 analysis7,21 (Figure 4).

The OR for being a case per standard deviation (SD) increase in

PGS was 1.57. The OR for being a case in the tenth compared

with the first decile of PGSs was 4.92 (95% CI 4.57–5.29) (Fig-

ure 4), and the OR for the top versus bottom centiles was 11.8

(95% CI 8.4–15.2) (Figure 4). Heterogeneity in the out-of-sample

prediction results could be partly explained by the recorded
644 Cell 188, 640–652, February 6, 2025
ascertainment type (Figure 4; key resources table), which we

classified as ‘‘clinical’’ (12 cohorts; ascertained from in- or out-

patient settings or EHR) or ‘‘community’’ ascertained (30 co-

horts; interviews or questionnaires self-reporting on lifetime

depression). The difference inmean PGSbetween clinical versus

community cases was 0.131 (SE 0.012, p < 2 3 10�16) control

sample SD units. The non-linear shape of these decile plots is ex-

pected under a polygenic architecture.22

Cross-ancestry prediction of MD

We used data from 9 diverse ancestry studies to assess PGS

transferability (Table S7A) using PGS derived from the clumping

and thresholding approach. The PGSs were derived from the

multi-ancestry and the European ancestry meta-analysis,

excluding 23andMe (Neffective = 739,180 and 576,327, respec-

tively). In the diverse ancestry studies, the r2l , by the PGS based

on the European ancestry training data ranged from �0.6%–

4.5%. The r2l values for prediction into European ancestry

(excluding 23andMe) were 3.9% (SE 0.2%) using PT = 0.05 (Fig-

ure 5; Table S7B). Values were lowest in studies with participants

of African descent, and in the largest African ancestry study, the

MVP, the PGS was not associated with MD r2l = 0.0018). Results

using the multi-ancestry summary statistics showed only minor

and non-significant differences from European-only PGS

GWAS-trained scores in all ancestry groups.



Table 2. Significant drug target enrichments

ATC class Drug name # of genes Q value Notes

L01AC03 CARBOQUONE 7 1.16 3 10�4 cancer compound

G03XC03 LASOFOXIFENE 2 5.64 3 10�4 osteoporosis treatment; oestrogen receptor modulator

L02AA04 FOSFESTROL 2 5.64 3 10�4 cancer causing and block synthesis of testosterone

G03GB01 CYCLOFENIL 4 1.39 3 10�3 gonadal stimulant

N03AX16 PREGABALIN 27 1.40 3 10�3 neuropathic pain, epilepsy, generalized anxiety disorder

N06AX19 GEPIRONE 2 5.19 3 10�3 antidepressant, not marketed

D11AX06 MEQUINOL 4 6.41 3 10�3 pigmental drug

N05AX16 BREXPIPRAZOLE 5 6.74 3 10�3 antipsychotic, antidepressant

N05AB08 THIOPROPERAZINE 2 0.0131 antipsychotic

N05AC04 PIPOTIAZINE 2 0.0131 antipsychotic

M05BX01 IPRIFLAVONE 14 0.0238 osteoporosis treatment

N06BA13, N06BA07 MODAFINIL 2 0.0337 narcolepsy treatment

D07AB08, S01BA11 DESONIDE 4 0.0337 anti-inflammatory

J01XX08 LINEZOLID 3 0.0337 antibiotic

N05AD04 MOPERONE 3 0.0419 antipsychotic

N05AX15 CARIPRAZINE 6 0.0493 antipsychotic

Table shows the top 16 most significantly enriched drugs based on capture of their targets within the gene-based associations of the current MD

GWAS analysis. One topical preparation is not shown. The test for drug enrichment is not directional and may indicate compounds that confer risk

of MD or exacerbate depressive symptoms, as well as those that ameliorate risk or depressive symptoms. Q value is false discovery rate,

Benjamini-Yekutieli corrected (competitive analysis).
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DISCUSSION

This study represents the largest and most inclusive GWAS of

MD to date, identifying 697 independent SNP associations

located within 635 independent genetic loci and evidence that

neuronal differentiation and receptor clustering are involved in

the etiology of the disorder. 308 high-confidence gene associa-

tions were identified (summarized in Table S8) in European an-

cestries. There was convergent evidence from multiple ap-

proaches for 15 genes, such as CYP7B1, a gene encoding a
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Figure 5. Polygenic prediction of MD status from European and

multi-ancestry GWAS into ancestrally diverse non-European studies

Details of cohorts found in Table S1. The r2l was calculated using a prevalence

of 0.15 with the P+CT method. The error bars are confidence intervals

calculated using bootstrap. The training data did not include 23andMe

because of access limitations. AFR, African ancestry; AMR, Hispanic and Latin

American ethnicities; EAS, East Asian ancestries; EUR, European ancestries;

SAS, South Asian ancestries.
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Our results confirm and extend previous findings showing

the enrichment of expression signals in excitatory and inhibi-

tory neurons. Importantly, the increased power in this genetic

analysis provided additional evidence for involvement of

amygdala and hippocampal excitatory neurons, including

granule cells and medium spiny neurons. The amygdala and

hippocampus have been previously implicated from a wide

range of human imaging24,25 and animal studies of depres-

sion26–28 and medium spiny neurons have also been previ-

ously implicated in animal studies of reward and are linked

to depressive behaviors.29,30 The enrichment of expression

signals in granule cells is of particular interest given the

renewal of this cell type throughout adult life in the dentate gy-

rus,31 its role in stress resilience,32 and the increased hippo-

campal granule cell expansion associated with antidepressant

treatment.33 Together, these findings underline the mecha-

nistic insights provided by the expansion of GWAS to over

half a million depressed individuals.

Lack of ancestral and global diversity remains a significant

concern for GWAS, with 86% of studies conducted in partici-

pants of European ancestry.34 Our study included data from

163,611 cases and 1,001,890 controls of non-European diverse

ancestries. Unlike most other multi-ancestry GWAS, we used a

joint analysis approach and did not exclude individuals with

mixed ancestry or ancestry not represented in reference sets.

This is becoming ever more important as the number of people

with mixed ancestry is increasing in countries such as the USA

and the UK.35 Overall, the additional ancestrally diverse partici-

pants helped identify 100 novel genetic associations and

enabled us to demonstrate significant genetic risk prediction

across diverse ancestry groups.

Using PGSs, the proportion of variation in liability to MD ex-

plained in European ancestry case-control studies also showed
646 Cell 188, 640–652, February 6, 2025
a considerable increase from an R2 of 3.2% in our previous ana-

lyses to 5.8% using SBayesR. We also show a significant MD

prediction in diverse non-European and admixed ancestries.

The SNP-h2 in this study of 8.4% implies that approximately

69% of the additive genetic variance for MD associated with

common SNPs across studies can now be accounted for by

PGSs. This study provides the first evidence of limited transfer-

ability of MD PGS to multiple diverse ancestries and further em-

phasizes the importance of conducting future GWAS studies

across different global populations, especially in Africa, where

transferability is poorest. While we did not find evidence for

improved prediction based on multi-ancestry rather than Euro-

pean-only PGS, this may be due to the small proportion of par-

ticipants within each individual ancestry group (23% of individ-

uals of non-European ancestries were divided across 4 major

ancestry and admixed groups) relative to the European ancestry

group alone.

Genome-wide association signals for depression also showed

enrichment for the targets of antidepressants, suggesting

that they may also help to reveal other effective treatment

targets and more effective interventions. Pregabalin36–39 and

Modafinil40 are both supported by sparse non-randomized

evidence supporting their efficacy in depression and related

conditions. Our findings provide further proof of principle that

GWAS is a useful means of identifying therapeutically relevant

drug targets and treatments.

Together, these findings highlight the value of ancestrally

diverse genetic studies to prioritize the study of pathophysiolog-

ical processes in MD. The clearer association of genetic variants

with altered gene expression and the enrichment of antidepres-

sant targets provide confidence that genetic association findings

will be relevant to the development, deployment, or repurposing

of pharmacotherapies. Critically, these findings suggest genetic

associations will point to new drug targets and more effective

therapies that may reduce the considerable disability caused

by depression.

Limitations of the study
The current meta-analysis is limited by the low proportion of par-

ticipants of non-European ancestries (76.6% of people with MD

were of European ancestry) who were genotyped using arrays

developed in European populations. This may reduce the power

to discover or test the cross-ancestry transferability of genetic

variants. Without larger and more globally representative sam-

ples, it is not clear whether (or to what extent) the genetic archi-

tecture ofMDdiffers by ancestry or whether there are genetic dif-

ferences between ancestral populations recruited from their

regional origin versus those recruited from diasporas.
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Data and code availability

d Summary statistics are available from Figshare through the following

link https://pgc.unc.edu/for-researchers/download-results/ (https://doi.

org/10.6084/m9.figshare.27061255). These data are publicly available

as of the date of publication.

d Individual data are made available following an approved application to

the PGCData Access Committee (https://pgc.unc.edu/for-researchers/

data-access-committee/). These data are available as of the date of

publication.

d Available summary statistics, including 23andMe data, require an

approved application to 23andMe here: https://research.23andme.

com/dataset-access/. These data are available as of the date of

publication.

d Summary statistics for the Genetic Association Information Network

(GAIN), NeuroGenetics Research Consortium (NGRC), Gene Environ-

ment Association Studies Initiative (GENEVA, Melanoma Study), and

other studies are available from The Database of Genotypes and Pheno-

types (dbGaP: https://dbgap.ncbi.nlm.nih.gov/). These data are avail-

able as of the date of publication. Instructions on how to access

dbGap data are available here: https://www.ncbi.nlm.nih.gov/gap/docs/

submissionguide/.

d Additional deposited reference dataset availability is here: HaplotypeRefer-

ence Consortium (European Genome-Phenome Archive, https://ega-

archive.org), GTEx v8 (GTEx Portal, https://gtexportal.org), Human Brain

Cell Atlas (CELL3GENE Discover, https://cellxgene.cziscience.com/),

eQTLGen (https://www.eqtlgen.org), MetaBrain (https://www.meta

brain.nl), Brain pQTL (AD Knowledge Portal, https://adknowledgeportal.

synapse.org), and SynGO (https://syngoportal.org/).

d Additional quality control information, gene-based association sum-

mary statistics in fastBAT (including figures), Hi-C, genetic correlation

results, full drug target enrichment findings, single-cell enrichment

figures, and PGS plots are also available for download from Figsh-

are through the following link: https://pgc.unc.edu/for-researchers/

download-results/ (https://doi.org/10.6084/m9.figshare.27089614).

See STAR Methods for a key resources table. These data are publicly

available as of the date of publication.

d Project code is available from https://github.com/psychiatric-genomics-

consortium/mdd-wave3-meta.
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Quaden, R., Harrington, K.M., Nuñez, Y.Z., Overstreet, C., et al. (2021).

Bi-ancestral depression GWAS in the Million Veteran Program and

meta-analysis in >1.2 million individuals highlight new therapeutic direc-

tions. Nat. Neurosci. 24, 954–963. https://doi.org/10.1038/s41593-021-

00860-2.

7. Wray, N.R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E.M., Ab-

dellaoui, A., Adams, M.J., Agerbo, E., Air, T.M., Andlauer, T.M.F., et al.

(2018). Genome-wide association analyses identify 44 risk variants and

refine the genetic architecture of major depression. Nat. Genet. 50,

668–681. https://doi.org/10.1038/s41588-018-0090-3.

8. CONVERGE Consortium; CARDIoGRAM Consortium; Gerad Consortium

(2015). Sparse whole-genome sequencing identifies two loci for major

depressive disorder. Nature 523, 588–591. https://doi.org/10.1038/

nature14659.

9. Meng, X., Navoly, G., Giannakopoulou, O., Levey, D.F., Koller, D., Pathak,

G.A., Koen, N., Lin, K., Adams, M.J., Renterı́a, M.E., et al. (2024). Multi-

ancestry genome-wide association study of major depression aids locus
discovery, fine mapping, gene prioritization and causal inference. Nat.

Genet. 56, 222–233. https://doi.org/10.1038/s41588-023-01596-4.

10. Als, T.D., Kurki, M.I., Grove, J., Voloudakis, G., Therrien, K., Tasanko, E.,

Nielsen, T.T., Naamanka, J., Veerapen, K., Levey, D.F., et al. (2023).

Depression pathophysiology, risk prediction of recurrence and comorbid

psychiatric disorders using genome-wide analyses. Nat. Med. 29, 1832–

1844. https://doi.org/10.1038/s41591-023-02352-1.

11. Zhu, T. (2020). Challenges of Psychiatry Drug Development and the Role of

Human Pharmacology Models in Early Development-A Drug Developer’s

Perspective. Front. Psychiatry 11, 562660. https://doi.org/10.3389/fpsyt.

2020.562660.

12. Yang, J., Ferreira, T., Morris, A.P., Medland, S.E., Genetic Investigation of

ANthropometric Traits (GIANT) Consortium; DIAbetes Genetics Replica-

tion And Meta-analysis (DIAGRAM) Consortium, Madden, P.A.F., Heath,

A.C., Martin, N.G., Montgomery, G.W., et al. (2012). Conditional and joint

multiple-SNP analysis of GWAS summary statistics identifies additional

variants influencing complex traits. Nat. Genet. 44, 369–375. https://doi.

org/10.1038/ng.2213.

13. Grotzinger, A.D., Rhemtulla, M., de Vlaming, R., Ritchie, S.J., Mallard, T.T.,

Hill, W.D., Ip, H.F., Marioni, R.E., McIntosh, A.M., Deary, I.J., et al. (2019).

Genomic structural equation modelling provides insights into the multivar-

iate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525.

https://doi.org/10.1038/s41562-019-0566-x.

14. Zeng, J., Xue, A., Jiang, L., Lloyd-Jones, L.R., Wu, Y., Wang, H., Zheng, Z.,

Yengo, L., Kemper, K.E., Goddard, M.E., et al. (2021). Widespread signa-

tures of natural selection across human complex traits and functional

genomic categories. Nat. Commun. 12, 1164. https://doi.org/10.1038/

s41467-021-21446-3.

15. Koopmans, F., van Nierop, P., Andres-Alonso, M., Byrnes, A., Cijsouw, T.,

Coba, M.P., Cornelisse, L.N., Farrell, R.J., Goldschmidt, H.L., Howrigan,

D.P., et al. (2019). Syngo: an evidence-based, expert-curated knowledge

base for the synapse. Neuron 103, 217–234.e4. https://doi.org/10.1016/j.

neuron.2019.05.002.

16. Bryois, J., Skene, N.G., Hansen, T.F., Kogelman, L.J.A., Watson, H.J., Liu,

Z., Eating; Disorders Working Group of the Psychiatric; Genomics Con-

sortium; 23andMe Research Team, and Brueggeman, L., et al. (2020). Ge-

netic identification of cell types underlying brain complex traits yields in-

sights into the etiology of Parkinson’s disease. Nat. Genet. 52, 482–493.

https://doi.org/10.1038/s41588-020-0610-9.

17. Zeisel, A., Hochgerner, H., Lönnerberg, P., Johnsson, A., Memic, F., van
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Samples
Overview

Here, we report the third GWAS from the Major Depressive Disorder (MDD) Working Group of the Psychiatric Genomics Consortium

(PGC MDD2023), We conducted a genome-wide association mega-analysis of major depression (MD) in 49 cohorts of European

ancestry (‘‘MDD49’’) with combined 28,147 cases and 48,033 controls (defined by the original study authors, but defined as individ-

uals withoutMD, schizophrenia or bipolar disorder). We thenmeta-analyzed theMDD49 results with summary statistics from 24 addi-

tional cohorts of European ancestry. We subsequently carried out a multi-ancestry meta-analysis, adding data from 160,611 cases

and 1,001,890 controls with diverse ancestry, for a total sample size of 688,808 cases and 4,364,225 controls (the ‘‘discovery

GWAS’’). This sample size has the power equivalent to a balanced study (with equal numbers of cases and controls) with a total sam-

ple size of Neff = 2* 1,000,101. For some cohorts, case status was based on self-report and did not reach the formal criteria of MDD.

Hence, we use the term major depression (MD) to define case-ness.54

MDD49

The core PGC MDD49 cohort set builds on the MDD29 sample from Wray et al.7 These cohorts provided individual phenotype and

genotype data for quality control, imputation, and analysis. The 49 cohort names, sample sizes, and inclusion/exclusion criteria are

summarised in Table S1 andmore details can be found inMethods S1.Most cohorts provided both cases and controls. For case-only

cohorts, cohorts were either merged ormatching controls were obtained from other PGC groups. Casesmet international consensus

criteria for a lifetime diagnosis of major depressive disorder (ICD9, ICD10, DSM-IV, or DSM-5). Cases were classified into clinical

studies (where diagnoses were established using structured diagnostic instruments by clinicians, trained interviewers, or medical

record review) and community studies (where structured diagnostic instruments were used for diagnosis of life-time major depres-

sion, or self-report of an MDD diagnosis). Controls were either screened for the absence of MDD and other mood disorders or

selected randomly from the population.

Additional cohorts

Many cohorts cannot share individual phenotype and genotype data but can contribute case-control GWAS summary statistics. We

incorporated summary statistics from 24 independent cohorts of European ancestry (496,710 cases and 3,010,973 controls) into the

meta-analysis. Building on Meng et al.,9 we also incorporated data from ancestrally diverse cohorts, including 8 cohorts with partic-

ipants of African ancestry (9,649 cases and 122,347 controls), 7 with East Asian ancestry (18,709 cases and 349,619 controls), 1 with

South Asian ancestry (3,748 cases and 25,934 controls), 5 with Hispanic/Latin American ethnicity (19,927 cases and 340,403 con-

trols). For the first time our analyses accommodated cohorts with participants of diverse andmixed ancestry by using a joint analysis

approach (12 cohorts, 108,578 cases and 163,587 controls). We excluded participants of European ancestry from these studies

where they had already been included in the analyses described above. The numbers of cases and controls, and MDD assessment

methods are summarized in Table S1. Additional information, including genotyping, quality control and imputation are described in

the Methods S1. Methods for determining MD status included clinical interviews, health register or medical records, self-reported

questionnaires, and self-report of diagnosis.

METHOD DETAILS

Genome-wide association study meta-analysis
Technical Quality Control (QC) of the 49 cohorts in the primary PGC sample

Technical QC was performed on single nucleotide polymorphisms (SNPs) in each core PGC study, applying standard PGC criteria

including SNP missingness < 0.05 (before sample removal); sample missingness < 0.02; autosomal heterozygosity deviation (| Fhet

| < 0.2); SNPmissingness < 0.02 (after sample removal); difference in SNPmissingness between cases and controls < 0.02; and SNP

Hardy-Weinberg equilibrium (HWE: P > 10�6 in controls or P > 10�10 in cases). For chromosome X (chrX) genotypes, we applied the

above QC to the males and females separately.41
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Genomic Quality Control: Principal Component Analysis (PCA) and Relatedness Checking

Within all 49 cohorts we performed PCA using autosomal SNPs with high imputation quality (INFO >0.8), low missingness (<1%),

MAF>0.05 and in relative linkage equilibrium after 2 iterations of linkage disequilibrium (LD) pruning (r2 < 0.2, 200 SNP windows),

removing well known long-range-LD areas (MHC and chr8 inversion). 17,608 SNPs present in all 49 cohorts, followed by the above

LD pruning were used for robust relatedness testing across cohorts using PLINK v1.955; pairs of subjects with PIHAT > 0.2 were iden-

tified and one member of each pair removed at random, preferentially retaining cases over controls.

To control for false positive associations due to inflated test statistics we evaluated the effectiveness of the primary technical and

genomic quality control parameters on the genome-wide inflation of test statistics using the lambda GC (median)56 and as necessary

made the QC parameters more stringent until this value was between 0.981 and 1.173 (before inclusion of principal components as

covariates) and/or between 0.977 and 1.068 after inclusion of PCA covariates. Additionally, we applied loose PCA filters for strongly

stratified datasets even if we did not observe strong inflation of test statistics to retrieve reliable test statistics (Figure S1 shows PCA

plots for all cohorts). Since the core PGC cohorts came frommany distinct centres, countries, and continents, variousmeasures (e.g.,

tightening of the technical QC parameters and/or genomic quality control) had to be taken in an iterative process to achieve this goal.

In summary we retained between 219K and 1.7M autosomal SNPs and 2476 to 28780 chromosome X SNPs in each cohort. For a

detailed list of excluded individuals and SNPs at various QC steps described above see (Table S2B).

Imputation of the core PGC dataset

Genotype imputation of case-control cohorts was performed using the pre-phasing/imputation stepwise approach implemented in

EAGLE 2 / MINIMAC357,58 with 132 genomic windows of variable size and default parameters. The imputation reference consisted of

54,330 phased haplotypes with 36,678,882 variants from the publicly available HRC reference, release 1.1.59 Chromosome X impu-

tation was conducted using individuals passing quality control for the autosomal analysis. Chromosome X imputation and associa-

tion analysis was performed separately for males and females.

QUANTIFICATION AND STATISTICAL ANALYSIS

Association / Meta-analysis in the core PGC dataset
In each cohort, association testing was based on an additive logistic regression model using PLINK.55 As covariates we used a sub-

set of the first 20 principal components (PCs), derived within each cohort. By default, we included the first 4 PCs and thereafter every

PC that was nominally significantly associated (p<0.05) with case-control status.We conducted ameta-analysis of the results using a

standard error inverse-weighted fixed effects model. For chrX, gene dosages in males were scored 0 or 2, in females, 0/1/2, then

association analysis was conducted separately for males and females andmeta-analysed.We summarized the associations as num-

ber of independently associated index SNPs. Index SNPs were LD independent and had r2 < 0.1 within 3 Mb windows. We recorded

the left and rightmost variant with r2 <0.1 to an index SNP to define an associated clump. To define loci, we added a 50kb window on

each side of the LD clump and combined overlapping LD-clumps into a single locus. Due to the strong signal and high LD in theMHC

region, only one SNP was kept from the extended MHC region (chr6:25-35Mb).

Joint analysis model for ancestrally diverse cohorts
We fitted ancestry-aware mixed models for 12 cohorts with ancestrally diverse and admixed participants. These were conducted

using GENESIS Bioconductor package in R, which was developed for large-scale genetic analyses in samples with complex struc-

ture including relatedness, population structure and ancestry admixture.60 Genotyped variants for each study were first pruned, and

the KING-robust methodwas used to estimate relatedness in the first instance. Subsequently, PC-Air was employed to calculate PCs

using the kinship matrix derived from KING-robust method and the pruned variants. PC-Relate was used to re-estimate relatedness

utilizing PCs from PC-Air. To enhance precision, a second iteration of PC-Air and PC-Relate was performed. Afterwards, we fitted a

null model for MD case-control status, using sex, age, all 32 PCs from PC-Air, and the kinship matrix from PC-Relate. Finally, score

tests were conducted using the null model and all imputed variants as predictors. Due to computational limitations, the Million Vet-

erans Program was partitioned into 19 batches, which were then combined using an inverse variance weighted meta-analysis, im-

plemented in METAL. To derive an estimate of the odds ratio (OR) and its standard error from the score test, the following conversion

algorithm was applied: 1) logOR = Score/Variance, and 2) SE = 1/sqrt(Variance).61

Post-imputation quality control procedures
Summary statistics were aligned to chromosome-position scaffolds for Genome Reference Consortium Human Build 37 (GRCh37/

hg19) and marker names were obtained from the Haplotype Reference Consortium (HRC) v1.1.59 Summary statistics on a different

genome build were lifted over to GRCh37 using rtracklayer v1.48.062 with UCSCChain Files and removing positions that are not com-

parable between genome builds.63 We then used DENTIST42 to identify any heterogeneity between each set of summary statistics

and the HRC LD reference. We calculated FST of SNP allele frequencies between each sample and the reference using the Hudson

estimator,64,65 fit a beta distribution to the observed FST values, and identified outliers that exceeded an upper quantile in the fitted

distribution of 0.05 divided by the number of variants tested in the summary statistics. We removed SNPs: DENTIST or FST outliers;

minor allele frequency in cases and controls < 0.001; a minor allele count in cases and controls of < 20; imputation INFO score < 0.1;

or that had alleles that were inconsistent with the reference sample. For each set of summary statistics we calculated the median
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odds ratio (OR) and standard error (SE) of the association statistics for SNPs with MAF > 0.01. We checked that median ORs were

close to 1 and plotted median SEs against effective sample size to detect potential effect size scaling errors. We estimated pairwise

LDSC genetic correlations44 among all cohorts and inspected genetic covariance intercepts for evidence of sample overlap. Pairs of

studies with covariance intercepts > 0.025 were returned to cohort analysts for scrutiny to resolve potential sample overlap or close

relatedness between sub-cohorts. For the diverse ancestry cohorts, only variants with an imputation information score of 0.7 or

higher were deemed eligible. Furthermore, for studies with a sample size smaller than 10,000, a minor allele frequency (MAF) of at

least 5% was required; for larger studies, we required a minimum effective sample size (Neff) of 50, calculated as Neff = 2 3

MAF 3 (1-MAF) 3 N 3 Info, where ’Info’ represents the imputation quality score, ‘MAF’ is the minor allele frequency and ’N’ is

the actual sample size.

Genome-wide association and fixed effects meta-analysis
After quality control, we meta-analysed genotype and summary statistics samples together using Ricopili version 2019_Jun_

18.00141 with HRC v1.1 as a reference panel. We identified genome-wide significant SNPs at p <= 53 10-8 and then identified inde-

pendently associated index SNPs by clumping SNPswith p <= 13 10-8, INFO>= 0.6 that were r2 > 0.1 andwerewithin 3Mbwindows

of an index SNP. The extended MHC region was considered as a single region for clumping. We ran a conditional-and-joint (COJO)

analysis12 on each region to identify SNPs that were associated after conditioning on the index SNP, using UK Biobank as the refer-

ence panel, and retained SNPs selected by COJOwith joint p <= 53 10-8. To reduce variation in per-SNP effective sample size due to

missingness across cohorts, we filtered SNPs to those with effectiveN >= 80%of themaximum effectiveN (calculated separately for

autosomes and chrX). We examined discovery power in comparison to previous GWAS of depression using genpwr.66 To determine

novelty of association findings, we looked for overlap in regions from recent MDD meta-analyses2,6,7,54,67 and associations for uni-

polar depression (EFO_0003761) in the GWAS Catalog.68

Common-factor meta-analysis
To examine the role of how MDD status was ascertained and phenotyped,69 we meta-analysed European ancestry studies together

based on phenotyping approach (clinical, electronic health records, questionnaire, or self-reported diagnosis) and then analysed the

grouped meta-analysis summary statistics in Genomic SEM.13 We estimated LD Score genetic correlations between each pheno-

type approach and conducted a common factor GWAS to test for heterogeneity in SNP effects across approaches. We fit a one-fac-

tor model where the loading factor on the Clinical/Interview phenotypewas fixed to 1, so that the latent factor explains all the variance

in clinical depression. We tested the hypothesis that the covariance matrix implied by the model differed from that observed in the

input data.

SNP-based heritability and Genetic Correlation estimation
SNP-based heritability was estimated using SBayesS14 assuming lifetime risk of 15% for comparison with previous work. SBayesS

was also used to provide estimates of polygenicity and selection. We estimated genetic correlations with other traits using LDSC.

First, we searched for COJO-selected SNPs in the OpenGWAS catalogue70 at the standard lookup threshold (p < 1 3 10-5) and

fetched full summary statistics for phenotypes returned by the query. We then estimated LD Score genetic correlations between

each phenotype andMD,44 using false discovery rate (FDR) with q < 0.05 to correct for multiple testing.We then compared our results

with previous MD GWAS analyses.

Polygenic analysis
Out of sample prediction

Of the case-control studies in the meta-analysis of European cohorts, 48 provided individual level data for analysis of which 43 were

available for polygenic scoring. For these cohorts, we conducted a leave-one-cohort out GWASmeta-analysis to allow generation of

polygenic scores (PGS) in the left-out target sample. Given a high variation in the effective sample size contributing to each SNP, we

restricted to the set of SNPs with (Neff)Rmax(Neff)*0.8, minor allele frequency > 0.05 and INFO > 0.75 in the full multi-ancestry anal-

ysis, resulting in 4.34 million SNPs. Preliminary analyses using the QC tool DENTIST42 justified this choice. We generated polygenic

scores (PGS) on all individuals using two methods. A PGS is the sum of risk alleles weighted by the risk allele effect size; methods

differ in the SNPs included and the effect sizes applied. To enable comparisons with previous publications, PGS were generated us-

ing the basic p-value clumping and thresholding (P+CT) method (LD clumping r2 threshold of 0.1, clumpwindow of 500kb, 10 p-value

thresholds). We also generated PGS using SBayesR,20 which is one of several methods that has been found to improve accuracy of

PGS compared to C+T by better choice of the SNPs and their weights (derived from the GWAS effect sizes) through modelling of the

genetic architecture. Of these methods we chose SBayesR because it ranked high in a study comparing methods,21 requires no tun-

ing sample to estimate hyper-parameters and is computationally less demanding.We used the software recommended LD reference

sample (sbr_ldmatrix.band.mldm) to infer the expected correlation structure between SNP association statistics. We also used the

SBayesRC, which is an extension of SBayesR which uses functional information in the SNP weighting algorithm.71 For comparisons

with the C+T PGS using genome-wide significant SNPs (p < 5x10-8) we also constructed a PGS based on the genome-wide signif-

icant SNPs and their weights (bJ) estimated from a conditional/joint COJO analysis (that allowsmultiple SNPswithin an LD block to be

selected if they show association additional to the lead SNP).12 For benchmarking comparisons, we also calculated PGS in the 20
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cohorts new in this PGCMDDwave 3 using SBayesR, SBayesRC and COJO derived fromGWAS summary statistics from previously

published PGCMDD GWAS studies in 2018 (Ncase=170,756, Ncont =329,443) by Wray7 and 2019 (PGC2+UKB + 23andMe-1stwave,

Ncase=246,363, Ncont=561,190) by Howard,2 omitting the individual-level genotyped studies from PGC MDD2.

The PGSwere evaluated in each cohort. Logistic regression of case/control status on PGS standardised in each cohort so that the

controls had PGS with mean zero and standard deviation of 1. Genetic principal components were included as covariates, but these

explained very little variation. The performance of prediction in each target cohort was quantified by the following metrics:

d p-value of the PGS regression coefficient,

d Area under the receiver operating characteristic curve (AUC),

d Nagelkerke’s R2 (a pseudo-R2 statistic that depends on the proportion of cases in the sample),

d Variance explained by the PGS on the liability scale, r2l , derived from the transformation of the variance explained in a linear

regression model,72 calculated assuming a population lifetime risk of MDD as 15%,

d OR of 10th PGS decile relative to the first decile,

d OR of 100th centile relative to the 1st centile

Results are reported per cohort and for the weighted mean across cohorts (weighted by effective sample size, Neff). The results

reported in the main text come from the joint analysis of 48 cohorts combined based on their within-cohort standardised PGS;

the estimated variance explained in liability from the joint analysis was the same as the weighted average of the estimates from in-

dividual cohorts. In addition to the evaluation statistics generated for individual cohorts, the joint analysis also allowed evaluation of

OR per PGS centiles and their 95% confidence intervals.

PGS association in participants with non-European ancestry
We conducted polygenic profiling in three cohorts of African ancestry (48,669 cases and 52,939 controls), two cohorts of Latinx

(AMR) ethnicity (1,202 cases and 5,112 controls), three cohorts of East Asian ancestry (6,902 cases and 75,879 controls), and three

cohorts of South Asian ancestry (4,862 cases and 28,965 controls) and compared them to the 43 European cohorts. We included

studies from China, the USA and the UK that had over 200 cases. Case status was defined based on symptom questionnaires,

healthcare records or a combination of both (Table S7). The summary statistics used as a training set excluded 23andMe (because

of data sharing restrictions). The available SNP set was limited to those withMAF > 0.10 and imputation INFO score > 0.9, and ambig-

uous SNPs were excluded. Further, we retained only SNPs with imputation INFO score > 0.9 in the target data sets.

As above, PGSwere calculated from the all-ancestries meta-analysis using the p-value P+CTmethod implemented in PRSice v243

For C+T, the LD estimation was based on the 1000 Genomes Project phase 3 samples (N=503) with European ancestry to match the

discovery sample. We fixed the LD r2 threshold at 0.1 and we assessed p-value thresholds (1, 0.5, 0.1, 0.05, 0.005, 5e-3, 5e-4, 5e-5,

5e-6, 5e-7, 5e-8), reporting results for the optimal threshold in each data set. The r2l was calculated on the liability scale, using an

MDD lifetime prevalence estimate of 0.15, by taking the difference of the R2
liability of the regression of PGS on the case status with

the first ten PCs as covariates, and the R2
liability of the null model including the first 10 PCs alone. The confidence intervals for the

r2l were calculated using bootstrapping with 100 iterations.

Tissue and cell-type enrichment analysis
We performed tissue and cell-type enrichment analysis aiming to identify relevant tissues and cell types underlying MDD. First, we

analyzed GTEx gene expression data (v8) in 27 human tissues after excluding: 1) tissues with less than 100 donors, 2) non-natural

tissues (such as cell lines), and 3) testis tissues (expression outlier).73 Second, for the cell-type analysis, we used single-cell RNA

sequencing data with over 160K high-quality cells sampled from 19 regions in the entire mouse central nervous system and periph-

eral nervous system.17 We analyzed these data at the cell-type level, including 39 broad cell types (level 4) and 251 refined cell types

(level 5, after filtering cell typeswith fewer than 20 cells). We considered only protein-coding geneswith 1:1 orthology between human

and mouse for the calculation of expression specificity. Third, we further evaluated the heritability enrichment using single-nucleus

RNA sequencing data of over 3 million high-quality nuclei from around 100 dissections across adult human brain.18 We analyzed this

dataset at the cell-type level including 31 superclusters and 461 cell clusters. For all expression datasets, we calculated a metric of

gene expression specificity as previously described16; it measures, for each gene, its expression in a specific tissue or cell-type rela-

tive to its total expression across all tissues or cell types. As in previous studies,16,74 we utilized the genes with the top 10% specificity

values in each tissue or cell-type for the enrichment analyses.

We used two primary methods, partitioned LD Score regression (pLSDC)75 andMAGMA (v1.08),45 to test the enrichment of tissues

and cell types in the MDDGWAS results. Our analyses using pLDSC evaluated if the SNPs within 100kb regions of the top 10% spe-

cifically expressed genes were enriched for SNP-based heritability. For each tissue or cell-type, we computed the LD scores for this

cell-type-specific annotation and added it to the baseline model of 53 functional annotations. We assessed the enrichment of tissue

or cell-types using the coefficient z-scores and computed one-sided p-values. For the analyses using MAGMA, we tested if the top

10% specifically expressed genes in each tissue or cell-type were the most associated genes from the GWAS. As part of this anal-

ysis, we filtered SNPs with MAF <1%or with imputation INFO score < 0.9, andmapped SNPs to genes with 35kb upstream and 10kb

downstream windows. We first conducted gene-level association tests and then gene-set analyses for the tissue or cell-type
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specifically expressed genes. For both methods, we used the European samples in the phase 3 of 1000 Genomes Project as the

reference panel and reported significance at the 5% false discovery rate within each dataset and method.

Gene finding analysis in fastBAT
A gene-based association analysis was conducted using fastBAT76 within GCTA version 1.94.0 beta.46 After removing SNPs with

MAF < 0.01 or with imputation INFO score < 0.8, there were 6,724,173 SNPs remaining for analysis. The European subsample

from phase 3 of the 1000 Genomes Project was used as the LD reference panel with the fastBAT default LD cut-off of 0.9 applied.

A gene list consisting of 19,878 protein coding genes available from https://figshare.com/articles/dataset/geneMatrix/13335548 was

used to map the base pair position of genes using genome build hg19. A total of 18,747 genes were analyzed for association with

MDD. A Bonferroni correction (0.05/18,747) was applied, with a p-value < 2.67 3 10-6 required for an association with MDD.

Fine mapping of SNPs

We identified putative causal variants for MD using PolyFun v1.0.047 and SuSiE v0.11.92.48 We restricted the meta-analyzed sum-

mary statistics to variants lying outside of the HLA region, with imputation INFO score > 0.6 and MAF > 0.001. We computed prior

causal probabilities based on 187 functional enrichments from the baselineLF2.2model,47 using an L2-regularized extension of strat-

ified LD Score regression (S-LDSC) implemented in PolyFun, using LD scores derived from the UK Biobank and provided with

PolyFun. We performed fine-mapping of genome-wide significant loci with windows defined by clumping (as described above).

We used SuSiE to perform the fine-mapping, assuming a single causal variant in each case (as single-variant fine-mapping does

not require population-accurate estimation of LD47). We identified variants of interest as having a posterior inclusion probability in

the causal set (PIP) > 0.95. We ranked all variants by PIP and defined 95% credible causal sets of variants as the minimum set of

variants whose PIPs summed to >=0.95. We mapped credible causal sets to 19,878 protein coding genes. We defined high-confi-

dence genes as those containing all variants within the credible causal set within the gene body, and additionally listed all genes at

least partially overlapping the credible causal set. We performed analyses on the full, multiple ancestry meta-analysis, and addition-

ally on the European ancestry subset. Estimates of LD (for clumping and for S-LDSC) used European ancestry reference panels; as

such, multiple ancestry analyses should be considered exploratory.

Expression-based mapping of SNPs
Overview

We used both Transcriptome-wide Association Study (TWAS)49 and Summary-based Mendelian Randomisation (SMR)51 methods

to infer differential gene expression associated with MDD based on the meta-analyzed summary statistics. Both methods test

whether genetic variants associated with MDD are also associated with differential expression of nearby genes. TWAS and SMR

have different limitations and are therefore complementary. TWAS considers the effect of multiple variants on gene expression

and the GWAS phenotype, thereby increasing statistical power to detect associations, whereas SMR only considers the effect of

each variant individually. However, TWAS requires multi-variant models predicting gene expression to have been generated in the

genotype-expression dataset, which are not available in some cases. In contrast, SMR requires only expression quantitative trait

(eQTL) summary statistics, enabling it to use a wider range of genotype-expression datasets, such as eQTL meta-analysis results

from eQTLGen77 andMetaBrain78 consortia. For TWAS and SMR analysis, the European subset of the 1000Genomes Project, Phase

3 was used as an LD reference.

TWAS

TWAS was performed based on a previous MDD TWAS,79 using FUSION software with default settings. All gene expression panels

were of European ancestry. Gene expression panels relating to the brain include dorsolateral prefrontal cortex (DLPFC) from

PsychENCODE, differential expression and splicing in DLPFC from the CommonMind Consortium (CMC) and the 12 brain regions

collected in the Genotype-Expression (GTEx) project. We also included panels capturing expression in pituitary, adrenal and thyroid

tissues from GTEx, given prior evidence these tissues play a role in MDD.80,81 Finally, we included panels capturing gene expression

in blood from GTEx, the Netherlands Twin Registry (NTR) and the Young Finns Study (YFS) due to their increased sample size, the

moderate correlation between cis-eQTLs across tissues,82 and evidence that altered expression in blood could influence risk of

MDD.83,84 To distinguish associations for a gene captured by multiple panels, we refer to each panel-gene pair as features.

To account for multiple testing of genes across panels, we used the transcriptome-wide significance threshold previously esti-

mated using a permutation procedure.79 The threshold for transcriptome-wide significance was p = 1.37310�6. A more stringent

significance threshold (a = .001; p= 3.69310�8) was applied to distinguish high-confidence associations.

Colocalization of overlapping GWAS and gene expression associations was assessed using coloc50 as implemented by FUSION.

coloc is a Bayesian method that estimates the posterior probability that associations within a locus for two outcomes are driven by a

shared causal variant (PP4).

Conditional analysis was performed using FUSION to determine whether associations within each locus were independent.

FUSION also estimates the proportion of the GWAS association explained by the predicted expression of all features in the locus.

Furthermore, TWAS-based fine mapping was carried out using FOCUS85 to help identify which features were most likely causal

for the association. FOCUS estimates the posterior inclusion probability (PIP) of each feature being causal within a region of asso-

ciation, using the sum of PIPs to define the default 90% credible set, a set of features likely to contain the causal feature.
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SMR

SMRwas run using eQTL meta-analysis summary statistics from European populations for blood from eQTLGen,77 and five nervous

system tissues from MetaBrain (Basalganglia, Cerebellum, Cortex, Hippocampus and Spinal Cord).78 SMR was run using default

settings. The HEIDI test is performed alongside SMR to test for effect size heterogeneity between the GWAS and eQTL summary

statistics, which would indicate that they are driven by different causal variants. The HEIDI test is a frequentist approach that is anal-

ogous to colocalization used to check for shared causal variants underlying TWAS associations.

Inferring altered dorsolateral prefrontal cortex protein levels in MDD

TWAS and SMR methods can also be applied to protein quantitative trait loci (pQTL) datasets, inferring whether genetic variation

associated with MDD confer altered protein levels. Recently, pQTL data from the dorsolateral prefrontal cortex (DLPFC) has been

prepared to perform proteome-wide association study (PWAS),86 using genotype-protein data from two datasets, referred to as

ROSMAP and Banner et al. We followed the same procedure as the study originally performing PWAS, which included performing

PWAS using both ROSMAP and Banner et al. panels, treating the larger ROSMAP panel as the discovery sample, and the Banner

et al. panel as a replication sample. Proteins were identified as statistically significant in ROSMAP if pFDR < 0.05 (correcting for

all proteins tested) and considered replicated in Banner et al. if pFDR < 0.05 (correcting for number of proteins tested for replication).

PWAS was performed using FUSION software with the in-built downstream colocalization analysis using coloc (PP4 > 0.8). As in the

original PWAS, we used the HEIDI test within SMR to confirm evidence of colocalization based on the ROSMAP dataset

(HEIDI p > 0.05).

Gene associations based on mapping chromatin profiles of brain tissues and cells

The gene-based association study for brain tissue-derived chromatin profiles for four tissues (fetal brain - paracentral cortex; adult

brain – DLPFC), and cells (astrocytes and neurons - human iPSCs) was performed using H-MAGMA v.1.08.52,87 Complementary to

TWAS and the coloc approaches, H-MAGMA maps functional and regulatory effects of non-coding SNPs based on three-dimen-

sional chromatin data.We tested all four tissue profiles integratedwith GWAS association statistics using European genetic-ancestry

reference panels. Bonferroni correction (0.05/number of associations = 3.733 10�6) on unique genes and four tissues was applied to

define significant associations. The genes were grouped into 1Mb regions based on hg19 position; if many genes were within close

proximity to each other, then the region size was bigger than 1Mb (e.g. for the MHC region).

Psychiatric Omnilocus Prioritization Score (PsyOPS)

PsyOPS combines multiple methods to identify genes that are likely to be causally implicated in psychiatric disorders.53 The method

prioritised genes based on three criteria: mutational constraint (gnomAD probability of loss-of-function intolerance [pLI] > 0.99), brain

expression (Human Protein Atlas ‘‘elevated in brain’’ designation), and association with neurodevelopmental disorders (from Geno-

mics England gene panels for autism, intellectual disability, and epilepsy). The PsyOPS score is assigned based on prediction from a

trained classification model. For each lead variant we selected the gene with the highest PsyOPS score, using nearest gene to

break ties.

Defining high-confidence genes across all gene-based analysis methods

We define genes as showing a high confidence association with MDD based on the following three criteria from fine mapping, TWAS

and PWAS analysis:

- SNP-based fine-mapping: all variants within the 95% credible causal set within the gene body

- TWAS: genes showing strong evidence of association in TWAS based on any gene expression panel (p < 3.69310�8, a=0.001),

strong evidence of colocalisation (coloc PP4 > 0.8), and being congruent with causal model based on TWAS-based fine-map-

ping (FOCUS PIP > 0.5)

- PWAS: protein was statistically significant based on both ROSMAP and Banner et al. protein panels, and showed strong evi-

dence of colocalisation based on ROSMAP panel using both coloc (PP4 >0.8) and HEIDI (p > 0.05)

Results from the SMR analysis of eQTL data were considered auxiliary as no fine-mapping approaches available. SMR results for

high-confidence genes are provided for additional information.

Other gene finding analyses based on the proximity of genes toMDD associated variation are often confounded by LD (linking lead

variants to the nearest gene (within 50kb), fastBAT and H-MAGMA), leading to multiple genes within a given locus to be associated.

These methods are therefore considered auxiliary, and do not provide sufficient evidence to define high confidence associations.

Furthermore, the PsyOPS gene prioritization approachwas considered auxiliary given it also links associated variants to genes based

on proximity, in addition to other information). Gene lists from auxiliary gene finding analyses were generated using the following

criteria:

- Nearest Gene: nearest gene to lead variant in genome-wide significant loci within 50kb.

- fastBAT: gene association p < 2.67 3 10-6 (0.05/18,747)

- H-MAGMA: gene association 3.733 10�6, controlling for all gene-panel tests

- PsyOPS: gene with highest PsyOPS score for each lead variant in genome-wide significant loci
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Gene set enrichment analysis: Synaptic Gene Ontologies (SynGO)

We conducted gene set enrichment tests of Gene Ontology (GO)88,89terms for biological processes, molecular mechanisms, and

cellular components that have been expertly curated for synapse function using SynGO.15 We input genes from the high-confidence

gene list (identified with finemapping, TWAS, or PWAS) into the SynGO Portal <https://syngoportal.org/> with "brain expressed"

genes as the background set.

Drug enrichment analysis

Drug-gene sets were created using Drug Targetor,19 which collates information across a range of drug-gene databases, including

ChEMBL, PHAROS, PDSPKi database andNCBI PubChemBioAssay.We grouped drug-gene sets into two hierarchical levels based

on the Anatomical Therapeutic Chemical (ATC) Classification System: pharmacological subgroup (3rd level) and chemical subgroup

(4th level).

Briefly, the Drug Targetor method,19 was used to assess the association of individual drug or small molecule related gene sets and

to assess drug class enrichment. Gene sets are given in accompanying supplementary files (see key resources table). Analyses were

run using MAGMA v1.1045 using gene flanks of -35kb 50 and +10kb 30.90 Drug class enrichment was calculated using area under the

curve (AUC) defined by the % of drug class gene-sets vs their rank in all the gene-sets.91

ADDITIONAL INFORMATION

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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Supplemental figures

Figure S1. Path diagram showing genetic loadings of MDD phenotype definitions on a latent MDD factor, related to the STAR Methods

Clin, clinical; EHR, electronic health record; Quest, questionnaire; SelfRep, self-report of MDD diagnosis. Numbers represent standardised loadings with

standard errors in brackets from genomic structural equation model, with the loading of the Clinical MDD phenotype constrained to 1.0. Self-directed arrows

indicate variance of the MDD factor or residual variances of the MDD phenotypes (‘‘u’’).
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