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While circadian disruption is recognized as a potential driver of depression, its real-world impact is
poorly understood. Acritical step to addressing this is the noninvasive collection of physiological time-
series data outside laboratory settings in large populations. Digital tools offer promise in this endeavor.
Here, usingwearable data, we first quantify the degrees of circadian disruption, both betweendifferent
internal rhythms and between each internal rhythm and the sleep-wake cycle. Our analysis, based on
over 50,000 days of data from over 800 first-year training physicians, reveals bidirectional links
between digital markers of circadian disruption andmood both before and after they began shift work,
while accounting for confounders such as demographic and geographic variables.We further validate
this byfindingclinically relevant changes in the9-itemPatientHealthQuestionnaire score.Our findings
validate a scalable digital measure of circadian disruption that could serve as a marker for psychiatric
intervention.

The advent ofmodern lifestyles has introduced a plethora of behaviors (e.g.,
shift work) that disrupt circadian rhythms. Such behavior-induced circa-
dian disruption has been implicated in the global surge of mental health
conditions,with about 20%of theworld’s population encounteringmoodor
anxiety disorders1. Notably, depression and anxiety are among the top 10
contributors to increased mortality, disability, and illness2. To tackle the
prevalence of psychiatric disorders, it is critical to predict and understand
mental health throughmodifiable behavioral, physiological, environmental,
and social factors. Among these factors, circadian disruption induced by
changes in behaviors is considered a particularly important contributor to
mental health risks3–5.

Circadian disruption measures are typically classified into two main
categories: 1)misalignmentbetween internal rhythms (e.g., timingof central
vs peripheral clocks), and 2)misalignment between internal rhythms (either
timing of central clock or peripheral clock) and behavioral rhythms (e.g.,
sleep-wake cycle)6. These forms of disruption vary in their causes, how they
are measured, and may vary in their relationships with mental health.
Early research on circadian disruption has focused on absolute levels of

misalignment between internal rhythms and behavioral rhythms, such as
the sleep-wake cycle7–10. For example, a shorter phase angle between sleep
and circadian biomarkers is correlated with greater depressive symptoms
among major depressive disorder patients or even healthy individuals7,8.
Researchers have expanded their scope on internal-behavioral rhythms to
include circadian disruption measured between internal misalignment
measures due to the discovery of the presence of molecular clocks existing
across all peripheral organs11–15. One human study found evidence of an
association of depressive severity with the phase angle between internal
rhythms8.This progresshas led tomounting interest in circadian rhythmsas
a potential prevention and treatment target for psychiatric disorders9.

However, although this knowledge about circadian disruption and its
effect on mental health from laboratory studies is robust, there is little
analogous data from real-world settings that are applicable to clinical and
population health6. One main challenge of translating the laboratory find-
ings into real-world clinical practice involves the continuous assessment of
circadian rhythms and sleep over an extended period in real-world settings.
A promising remedy is to passively create their digital analogs by integrating
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computational algorithms with physiological and behavioral data collected
using wearable devices. Recent research has shown that simulating math-
ematical models of the circadian clock coupled with wearable activity or
light data can predict circadian biomarkers16–18. Moreover, statistical
approaches based onMarkov chainMonte Carlo or nonlinear least squares
methods have been proposed to analyze peripheral circadian rhythms in
heart rate (HR) or body temperature from wearable data19,20. Notably, we
recently developed a nonlinear Kalman filtering framework that enables
simultaneous statistical inference of the time evolution ofmultiple circadian
biomarkers from wearable data under highly noisy conditions20,21.

Another hurdle in exploring interconnections between circadian dis-
ruption and mental health involves collecting data on symptoms of psy-
chiatric disorders in large-scale cohorts. To circumvent this, recent studies
have developed protocols based on the use of mobile technology22–26. For
instance, the InternApp, amobile platformgatheringpassive data onmood,
activity, andHR,was created andvalidated througha large-scale prospective
cohort study, the Intern Health Study25,27–29. There have also been recent
studies exploiting the data collected from this mobile technology to analyze
the relationship between various sleep parameters and depression risks24,30.
Notably, the Intern Health Study showed that medical trainees experienced
reduced total sleep time and later bedtime, and a significant increase in day-
to-day variability in both total sleep time and wake time after starting the
internship24. These changes were associated with an increased risk of
depression.

In this study,we derived statisticalmeasures of circadian rhythms from
wearable HR, activity, and sleep data by exploiting the recently developed
and validated nonlinear state estimation approach described above20,21. That
includes 1) the circadian rhythm in the central oscillator (CRCO) and 2) the
circadian rhythm in the peripheral oscillator (CRPO). The wearable device
also measures the behavioral rhythm that is represented by the sleep mid-
point. Then, we used these measures to calculate three digital markers that
represent circadian disruption: 1) themisalignment between theCRCOand
the sleep midpoint (CRCO-sleep misalignment), i.e., the absolute phase
difference between the CRCO and the sleep midpoint, 2) the misalignment
between the CRPO and the sleep midpoint (CRPO-sleep misalignment),
and 3) the internal misalignment between CRCO and CRPO. Importantly,
these three digital markers capture distinct components of circadian dis-
ruption. Specifically, theCRCO-sleep andCRPO-sleepmisalignment reflect
misaligned timing of the sleep-wake cycle with the central and peripheral
clocks, respectively, and often arise under shift work schedules or social
jetlag conditions9. The central and peripheral circadian clocks respond
differently to external perturbation31, and disruptions of central and per-
ipheral oscillators with respect to behavioral rhythms may reflect different
physiological dynamics. Compared to internal-behavioral misalignment,
the misalignment between internal circadian rhythms is more directly
linked to abnormal physiological events, such as disrupted metabolic
patterns32. Thus, the relationship between mood and each disruption
marker should be separately analyzed to achieve more specialized inter-
vention strategies under different environmental conditions.

Therefore, the goal of our studywas to explore the relationshipbetween
moodand the threewearable-basedcircadiandisruptionbiomarkers in real-
world settings. Specifically, we investigated the associations of these circa-
dian disruption biomarkers with mood and depressive symptoms among
medical interns in the Intern Health Study. This cohort provides a unique
opportunity to studycircadiandisruptionbecause interns arenewly exposed
to demanding work conditions with changing shift schedules over the year.
We also investigated the effect of work conditions during the internship on
the strength of association between each circadian disruption marker and
mood to better understand the utility of each marker under different
working conditions. Finally, we examined the association between circadian
disruption and 9-item Patient Health Questionnaire (PHQ-9) scores to
further validate the proposed circadian disruption measures and examine
their relationship with depressive symptoms.

In this study, we found the CRCO-sleep misalignment had the most
significant negative impact on the next day mood, whereas the mood

exhibited themostpronounced impacton the internalmisalignmentbetween
CRCO and CRPO. We also found clear associations of CRCO-sleep mis-
alignment with specific depressive symptoms, such as sleep-related troubles,
poor appetite, and overeating, which matches previous laboratory
findings9,32–34. Our large-scale study suggests the potential of employing a
digital approach based on wearable and mobile technologies to understand
the interconnections between circadian disruption and mood in real-world
settings.

Results
Assessment of circadian disruption and mood using wearable
data and a mobile app
The study cohort consisted of 2077 interns whoseHR, activity, and sleep data
were collected using the Fitbit Charge 2TM over an average of 120.8 (standard
deviation (SD) = 79.2) days. During the baseline period and intern year, an
average of 21.8 (± 13.3) and 102.2 (± 78.8) days of wearable data were
collected, respectively. After carefully applying the exclusion criteria (see
Methods and Supplementary Fig. 1 for details), a total of 833 subjects were
included in the analysis. Demographic and geographic information of these
subjects is provided in Supplementary Table 1 and Supplementary Fig. 2.

The wearable data were analyzed to estimate CRCO, CRPO, and sleep
midpoint using previously proposed andvalidated statistical approaches18–21

(Fig. 1a and Supplementary Fig. 3; see Methods for details). Specifically,
CRCOwas estimated by using a state-of-the-art Kalman filtering approach,
which incorporates indirect information about the CRCO from the CRPO
into a probabilistic model of the central circadian clock20,21. Using the esti-
mates of circadian and sleep parameters, three circadian disruption wear-
able measures were calculated. The first measure, denoted by CRCO-sleep
misalignment, assesses themisalignment between the estimated CRCO and
sleep-wake cycle. It was defined as the absolute difference between the time
of the minimum in the central oscillation and sleep midpoint, taking into
account that the circadian minimum of the model estimate occurs
approximately 1 hour after sleep midpoint under normal conditions18,35–37.
CRPO in the heart was estimated using a nonlinear least squares method
recently proposed in ref. 20. The second measure, denoted by CRPO-sleep
misalignment,was defined as the absolute differencebetween the timeof the
circadian HRminimum and sleep midpoint in hours. No reference angle is
required here because the time of the circadian HR minimum and sleep
midpoint align under normal conditions19. The third statistical measure
assesses the internal misalignment between CRCO and CRPO. It was
defined as the log-likelihood value of the absolute difference between the
central and peripheral HR clock phases. Further details of the three mea-
sures are described in Methods.

In Fig. 1b, we show the distributions of the three measures for 52,061
days of Fitbit data obtained from 833 interns in the Intern Health Study.
After starting the internship, the interns experienced a significant increase in
CRCO-sleep misalignment from a mean of 1.67 (SD = 1.58) to 2.19
(SD = 2.35) hours (p < 0.001; Fig. 1c left), and CRPO-sleep misalignment
from amean of 4.12 (SD = 2.90) to 4.62 (SD = 3.21) hours (p < 0.001; Fig. 1c
middle). The internal misalignment also increased during the internship
(5.62 [SD = 3.59] vs 5.74 [SD = 3.88]; p = 0.005; Fig. 1c right).

For the analysis of daily mood, interns used the Intern App to report
their daily mood score from 0 to 10, where a higher score corresponds to
better mood (Fig. 1d; see Methods for details). Because the overall dis-
tribution of mood scores was highly skewed (Fig. 1d top right), we stan-
dardized the raw mood scores within each subject using z-statistics,
following previous studies38,39. After starting the internship, the subjective
mood score significantly decreased (0.21 ± 0.99 vs−0.06 ± 0.99; p < 0.001;
Fig. 1d bottom). Moreover, the interns were instructed to complete a
quarterly PHQ-9 questionnaire during the internship to evaluate their
depression risk beyond their dailymood score. The averagePHQ-9 score for
each subjectwas obtained by averaging all the quarterly scores duringwhich
the subject’s wearable data was available. The average PHQ-9 scores
among subjects significantly increased after starting the internship (2.57 ±
2.77 vs 5.46 ± 3.86; p < 0.001; Fig. 1e bottom).
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Effects of circadian disruptions on mood in real-world settings
To investigate the effects of circadiandisruptions onmood,we evaluated the
relationship between the current day circadian disruptionmeasures and the
next day mood score. The correlation between current day CRCO-sleep
misalignment and next-day mood score was not statistically significant
before the internship (n = 10,387 days, p = 0.583; Fig. 2a). However, during
the internship, the correlation became statistically significant
(n = 41,084 days, ρ =−0.861, p < 0.001; Fig. 2b). Unlike CRCO-sleep mis-
alignment, increasedCRPO-sleepmisalignmentwas significantly correlated
with worsened next day mood both before (ρ =−0.604, p = 0.029; Fig. 2c)
and during (ρ =−0.970, p < 0.001; Fig. 2d) the internship. However, the
predictive abilityofCRPO-sleepmisalignment onnextdaymoodduring the
internshipwas lower than that ofCRCO-sleepmisalignment, as represented
by the slope of the line of best fit, i.e., the beta value (b =−0.022 ± 0.008 vs
b =−0.011 ± 0.002; 95% confidence interval; Fig. 2b, d, respectively).
Furthermore, the internal misalignment was negatively correlated with the
next day mood both before and during the internship (ρ <−0.765,
p < 0.001; Fig. 2e, f), although its overall predictive ability during the
internship was also lower compared to the CRCO-sleep misalignment
(b =−0.022 ± 0.008 vs b =−0.007 ± 0.003; 95% confidence interval; Fig.
2b, f). So far, we have investigated the association between circadian dis-
ruption and next daymood usingmisalignmentmeasures binned at 1-hour
intervals. Indeed, the association remained consistent evenwhen thebin size
changed (Supplementary Fig. 4a–c).Moreover, the statistical significance of
this association persisted after adjusting for the error in each bin using
weighted least squares regression40 (Supplementary Table 2). Consistent
with our findings that CRCO-sleep misalignment had a higher predictive
ability for daily mood compared to other circadian disruption measures
during the internship, an increase in CRCO-sleep misalignment levels after
the internship beganwasnegatively correlatedwith adecrease indailymood
scores (Supplementary Fig. 5).

We further investigated the relationship between the current day cir-
cadian disruption measures and the next day mood score by conducting a
generalized estimating equation (GEE) analysis (see Methods for details).
This method adjusts for repeated measures from the same subject and
individual demographic and geographic factors, including sex, age, race, and
time zone. Even after adjusting for these variables, our findings remained
consistent (Fig. 2g and Table 1). We then validated these findings using a
linear mixed-effects model (LME) that considers repeated measures from
the same subject and demographic and geographic variables as subject-
specific random effects (see Methods for details). This confirmed that the
negative correlation between circadian disruptionmeasures and dailymood
scores persisted, even when accounting for individual differences in
demographics and geography (Fig. 2h and Table 2). Indeed, all findings
remained statistically significant after multiple test corrections using the
two-stage linear step-up procedure (TSL)41. Notably, the negative correla-
tion observed during the internship remained statistically significant after
adjusting for autoregressive and synchronous correlation effects in mood
and circadian disruption markers using a cross-lagged panel model (Sup-
plementary Fig. 6 and Supplementary Table 3; see Methods for details).
These results indicate that the CRPO-sleep misalignment can be attributed
to the worsened next daymood regardless of stressful work conditions such
as an internship. Conversely, it is only under stressful work conditions
leading to a more irregular lifestyle that a more robust CRCO can become
significantlymisalignedwith sleeppatterns, and this results in a pronounced
detrimental impact on mood on the following day. Indeed, CRCO-sleep
misalignment continued to show the strongest association with worse next
daymood among all threemarkers, even after adjusting for the effects of the
other two markers (Supplementary Table 4).

We also investigated the effect of time awake and variability in sleep
timing, represented by the shift in the sleepmidpoint relative to the previous
day, on the association between circadian disruption measures and daily

Fig. 1 | Wearable-based circadian disruption measures, daily mood, and
depression risk. a The wearable heart rate and activity data are analyzed using
previously validated statistical methods (20,21; seeMethods for details) to estimate the
phase of the circadian rhythm in the central oscillator (CRCO; blue) and the phase of
the circadian rhythm in the peripheral oscillator (CRPO; red), specifically from the
cardiac pacemaker. The sleep midpoint (yellow) was measured from activity and
sleep data. The shaded gray region denotes sleep episodes. b Distribution of

circadian disruption measures. c Box-and-whisker plots of circadian disruption
measures before and during the internship. d Interns were asked to evaluate their
daily mood scores from 0 to 10, where a higher score corresponds to a better mood.
e Interns also completed quarterly PHQ-9 questionnaires to evaluate their depres-
sion risk from 0 to 27, where a higher score corresponds to elevated depression risks.
A two-tailed t-test was used to assess statistical significance. *p-value < 0.05; **p-
value < 0.01; ***p-value < 0.001.
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mood (Supplementary Figs. 7 and 8). We found that the statistically sig-
nificant negative correlation between CRPO-sleepmisalignment andmood
persists regardless of an individual’s total time awake and variability in sleep
timing (Supplementary Figs. 7b and 8b). This supports the negative impact
of the disruption in peripheral circadian rhythms onmood, independent of
working conditions (Fig. 2c, d). In contrast, the time awake and variability in
sleep timing affect the association of CRCO-sleepmisalignmentwithmood,
respectively (Supplementary Figs. 7a and 8a). For example, as an individual
experienced greater variability in sleep timing relative to the previous day,
the negative correlation between CRCO-sleep misalignment and mood
became more pronounced (b = 0.010 ± 0.016, ρ = 0.458, and p = 0.302 vs
b =−0.025 ± 0.010, ρ =−0.830, and p < 0.001; Supplementary Fig. 8a(i)

and 8a(iv), respectively). This highlights the importance of carefully con-
sidering the negative impact of specific circadian disruptions on mood in
conjunction with an individual’s lifestyle.

Effects of mood on circadian disruptions in real-world settings
To find a specific bidirectional relationship between circadian disruptions
andmood,wenext investigated the effects ofmoodon circadiandisruptions
by comparing the current day mood score to the next day circadian dis-
ruption measures. Similar to the effect of the current day CRCO-sleep
misalignment on the next day mood, the correlation between the current
day mood score and the next day CRCO-sleep misalignment level was not
significant before the internship (n = 10,881 days, ρ =−0.252, p = 0.512;

Fig. 2 | The relationship between circadian disruption measures on the current-
day and daily mood on the subsequent-day. a, b The correlation between current
day CRCO-sleep misalignment level and mood score on the following day
before the internship (a), and during the internship (b). c, d The correlation
between current day CRPO-sleep misalignment level and mood score on the
following day before the internship (c) and during the internship (d). e, f The
correlation between current day internal misalignment level and mood score on
the following day before the internship (e) and during the internship (f). The
next day mood scores were binned by each misalignment level. Bin edges were
computed every 1 hour, and the mean and standard error of the mean of mood
scores were plotted against the midpoint of each bin. The line and shaded

region represent the best-fitted line and the corresponding 95% confidence
band, respectively, obtained by applying linear least squares regression to the
binned data. b, ρ, and p denote the beta estimate, Pearson’s correlation coef-
ficient, and p-value, respectively. g, h The negative correlation between current
day circadian disruption measures and mood score on the following day per-
sisted even after adjustment for demographic and geographic variables using a
generalized estimating equation analysis (g) and a linear mixed-effects mod-
eling (h). The 95% confidence intervals of the estimated beta values and their
respective p-values are indicated with error bars and asterisks. A two-tailed
Wald t-test was used to compute p-values and assess statistical significance. *p-
value < 0.05; **p-value < 0.01; ***p-value < 0.001.
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Fig. 3a), but it became significant during the internship (n = 41,180 days,
ρ =−0.556, p = 0.048; Fig. 3b). Likewise, the current daymood score did not
exhibit a significant negative correlation with the next day CRPO-sleep
misalignment before the internship (ρ =−0.501, p = 0.170; Fig. 3c), but it
became significant during the internship (ρ =−0.796, p = 0.001; Fig. 3d).
The current day mood score was negatively correlated with the next day
internal misalignment both before and during the internship (ρ <−0.820,
p < 0.001; Fig. 3e, f). Notably, the overall predictive ability of mood on
internal misalignment was greater than those on CRCO-sleep and CRPO-
sleep misalignment during the internship (b =−0.142± 0.038 vs
b =−0.038 ± 0.034 and −0.064 ± 0.029, respectively; 95% confidence
interval; Fig. 3b, d, and f). These findings remained consistent both after
changing the bin size (Supplementary Fig. 4d–f) and after accounting for the
error in each bin using weighted least squares regression (Supplementary

Table 2). We obtained similar results after adjusting for repeated measures
from the same subject and demographic and geographic information using
GEE (Fig. 3g and Table 1) and LME (Fig. 3h and Table 2). Additionally, the
results remained consistent even after accounting for autoregressive and
synchronous correlation effects in mood and circadian disruption markers
using a cross-lagged panelmodel (Supplementary Fig. 6 and Supplementary
Table 5). After multiple test corrections using TSL, the association between
current day mood and next day circadian disruption measures assessed
using the weighted least squares regression remained statistically significant
during the internship, but not before the internship. However, all tests from
GEE and LME remained statistically significant after multiple test correc-
tions. These results suggest that a combination of worsened mood and
extremework conditions disrupts the alignment between circadian rhythms
and sleep patterns. In contrast, a worsened mood strongly affects the

Table 1 | The relationship between circadian disruption measures and daily mood analyzed using a generalized estimating
equation

Predictors beta z-statistics Pr(>|z | ) 95% C.I

Disruption vs next day mood

Before internship CRCO misalignment −0.014 −2.134 0.033 [−0.027, −0.001]

CRPO misalignment −0.017 −4.704 < 0.001 [−0.024, −0.010]

Internal misalignment −0.017 −5.240 < 0.001 [−0.024, −0.011]

During internship CRCO misalignment −0.013 −4.859 < 0.001 [−0.018, −0.008]

CRPO misalignment −0.010 −5.160 < 0.001 [−0.014, −0.006]

Internal misalignment −0.008 −5.239 < 0.001 [−0.012, −0.005]

Mood vs next day disruption

Before internship Mood (vs CRCO) −0.060 −3.236 0.001 [−0.097, −0.024]

Mood (vs CRPO) −0.080 −2.668 0.008 [−0.138, −0.021]

Mood (vs Internal) −0.116 −3.188 0.001 [−0.188, −0.045]

During internship Mood (vs CRCO) −0.053 −3.252 0.001 [−0.085, −0.021]

Mood (vs CRPO) −0.077 −3.645 < 0.001 [−0.119, −0.036]

Mood (vs Internal) −0.164 −6.778 < 0.001 [−0.212, −0.117]

The association between current day circadian disruption and next daymood score before and during the internship was analyzed after accounting for the repeatedmeasurements from the same subject
and demographic and geographic information using generalized estimating equations. The same analysis was repeated between current day mood and next day circadian disruption. Here, we report the
beta estimate, its 95% confidence intervals (C.I.), and the p-value.

Table 2 | The relationship between circadian disruption measures and daily mood analyzed using linear mixed-effect modeling

Predictors beta z-statistics Pr(>|z | ) 95% C.I

Disruption vs next day mood

Before internship CRCO misalignment −0.014 −2.292 0.022 [−0.027, −0.002]

CRPO misalignment −0.018 −5.261 < 0.001 [−0.025, −0.011]

Internal misalignment −0.018 −6.182 < 0.001 [−0.024, −0.012]

During internship CRCO misalignment −0.013 −6.510 < 0.001 [−0.017, −0.009]

CRPO misalignment −0.011 −7.441 < 0.001 [−0.015, −0.008]

Internal misalignment −0.009 −7.255 < 0.001 [−0.012, −0.017]

Mood vs next day disruption

Before internship Mood (vs CRCO) −0.059 −3.958 < 0.001 [−0.088, −0.030]

Mood (vs CRPO) −0.081 −2.995 0.003 [−0.134, −0.028]

Mood (vs Internal) −0.118 −3.585 < 0.001 [−0.182, −0.053]

During internship Mood (vs CRCO) −0.053 −4.671 < 0.001 [−0.075, −0.031]

Mood (vs CRPO) −0.082 −5.713 < 0.001 [−0.110, −0.054]

Mood (vs Internal) −0.168 −9.450 < 0.001 [−0.202, −0.133]

The association between current day circadian disruption and next daymood score before and during the internship was analyzed after accounting for the repeatedmeasurements from the same subject
and demographic and geographic information using linear mixed-effects models. The same analysis was repeated between current day mood and next day circadian disruption. Here, we report the beta
estimate, its 95% confidence intervals (C.I.), and the p-value.
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synchronization of the circadian rhythms, regardless of stressful working
conditions.

Effects of circadian disruptions on longitudinal depression risks
Because daily mood scores only capture one symptom of mental health, we
also examined the association of circadian disruption measures with PHQ-
9, a well-validated measure of major depressive disorder that assesses levels
of nine symptoms in the last two weeks42. PHQ-9 scores were assessed once
before the internship began and then at the end of each quarter throughout
the internship. A score was included when a subject had at least 10 days of
valid wearable activity, HR, and sleep data during the two-week period
assessed by the PHQ-9. The average PHQ-9 score for each subject during
the internship was then calculated by averaging their quarterly PHQ-9
scores. Similarly, the circadian misalignment levels during the two weeks

preceding the PHQ-9 assessment were averaged. After removing subjects
who had insufficient days of wearable recording (see Methods and Sup-
plementary Fig. 1 for details), a total of 465 and 671 subjects (18.6 ± 7.6 and
59.6 ± 53.3 days of recording) were included in the before and during
internship analyses, respectively.

Average circadian misalignment levels were not associated with
baseline PHQ-9 scores assessed before the internship (Supplementary
Table 6). In contrast, during the internship, average CRCO-sleep mis-
alignment was significantly positively correlated with the average PHQ-9
scores (b = 0.705, ρ = 0.879, p = 0.009; Fig. 4a), consistent with its negative
correlation with the daily mood. This statistically significant positive
correlation persisted even after accounting for random effects of demo-
graphic and geographic variables and the other two markers (Supple-
mentary Tables 7 and 8). Notably, this statistically significant positive

Fig. 3 | The relationship between daily mood on the current-day and circadian
disruption measures on the subsequent-day. a, b The correlation between current
daymood score and CRCO-sleepmisalignment level on the following day before the
internship (a) and during the internship (b). c, d The correlation between current
daymood score and CRPO-sleepmisalignment level on the following day before the
internship (c) and during the internship (d). e, fThe correlation between current day
mood score and internal misalignment level on the following day before the
internship (e), and during the internship (f). The next day circadian misalignment
levels were binned by the correspondingmood score. Bin edgeswere computed every
0.5, and the mean and standard error of the mean of misalignment levels were
plotted against the midpoint of each bin. The line and shaded region represent the

best-fitted line and the corresponding 95% confidence band, respectively, obtained
by applying linear least squares regression to the binned data. b, ρ, and p denote the
beta estimate, Pearson’s correlation coefficient, and p-value, respectively. g, h The
negative correlation between current day mood score and circadian disruption
measures on the following day persisted even after adjustment for demographic and
geographic variables using a generalized estimating equation analysis (g) and a linear
mixed-effects modeling (h). The 95% confidence intervals of the estimated beta
values and their respective p-values are indicated with error bars and asterisks. A
two-tailed Wald t-test was used to compute p-values and assess statistical sig-
nificance. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.
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correlation is not evident if CRCO is estimated using conventional
approaches that solely rely on mathematical model simulation18,43 (see
Methods for details) but do not incorporate indirect information about
the CRCO from other circadian biomarkers in predicting CRCO phase
(Supplementary Fig. 9). This demonstrates the importance of considering
circadian rhythms from multiple molecular clocks to obtain an optimal
prediction of CRCO through a data assimilation method20,21. Unlike
CRCO-sleep misalignment, we did not find a significant correlation
between the average PHQ-9 scores and average CRPO-sleep and internal
misalignments (Supplementary Fig. 10). This is consistent with our
finding that CRCO-sleep misalignment has a stronger predictive ability
for daily mood than other circadian disruption measures.

We next investigated the association between CRCO-sleep misalign-
ment and the itemized score (from0 to 3) of each nine symptomswithin the
PHQ-9 questionnaire to pinpoint particular aspects of depression that are
linked with circadian disruptions. Interns with greater CRCO-sleep mis-
alignment reported higher scores for the item “Trouble falling asleep or
staying asleep, or sleeping too much” (b = 0.144; ρ = 0.964, p < 0.001; Fig.
4b). This supports the validity of our statistical measure of CRCO-sleep
misalignment. Internswith higher CRCO-sleepmisalignment also reported
higher scores for the item “Poor appetite and overeating” (b = 0.084;
ρ = 0.824, p = 0.023; Fig. 4c). This matches previous experimental studies
demonstrating that circadian misalignment induces dysregulation of
appetite-stimulating hormones and glucosemetabolism, leading to changes
in feeding behaviors9,34,44,45. Moreover, elevated average CRCO-sleep mis-
alignmentwas associatedwith other potential indicators of increased fatigue
level and worsened emotional state, such as “Feeling badly about yourself”
(b = 0.09; ρ = 0.784, p = 0.037; Fig. 4d), “Trouble concentrating” (b = 0.09;
ρ = 0.828, p = 0.021; Fig. 4e), “Moving too slow or restless” (b = 0.024;
ρ = 0.765, p = 0.045; Fig. 4f), and “Thoughts of hurting yourself” (b = 0.042;
ρ = 0.866, p = 0.012; Fig. 4g). The correlation between the average CRCO-
sleepmisalignment and the items “Troublewith sleeping”, “Poor appetite or
overeating”, “Trouble concentrating”, and “Thoughts of hurting yourself”
remained statistically significant after multiple test corrections using TSL.
These associations between CRCO-sleep misalignment and the itemized
scores of nine symptoms generally remained consistent in the LMEanalysis,
although the statistical significance decreased (Supplementary Tables

7 and 8). Taken together, these results strongly suggest that CRCO-sleep
misalignment plays a critical role in increased risks of various negative
physiological and psychiatric outcomes.

Discussion
In this study, we derived digital biomarkers of circadian disruption by
combining wearable and mobile technologies with our scalable statistical
methods validated inpreviouswork18–21,46.Weapplied these digital circadian
biomarkers in a large-scale cohort study, the Intern Health Study, to assess
their associations with mood and depressive symptoms. By analyzing
longitudinal wearable andmobile app data collected from over 800medical
interns under real-world conditions, we identified that the three circadian
disruption measures were all statistically significantly correlated with next
day mood. Among the measures, greater misalignment between sleep
midpoint and CRCO inferred from wearable data exhibited the strongest
negative associationwith the next daymood, potentially suggesting itsmost
pronounced detrimental effect (Fig. 2), while a worse current daymood had
the most significant negative correlation with the next day internal mis-
alignment (Fig. 3).We also showed that the CRCO-sleepmisalignment was
associated with both the overall PHQ-9 score and the scores of specific
subitems from the PHQ-9 questionnaire (Fig. 4). Our findings remained
consistent even when we adjusted for potential confounding variables and
repeated measures from the same subject using GEE and LME (Tables
1 and 2 and Supplementary Table 7). These results suggest the potential use
of digital circadian biomarkers to open a new window for personalized
mental health care outside the laboratory or clinical settings.

The complementary findings from basic, preclinical, and clinical
research indicate that circadian disruption is a potential underlying source
of elevated mental health risks3,5. For example, previous experimental stu-
dies on night shifts and jet lag have identified some meaningful correlation
between circadian disruption and increased depressive behaviors7–10,47.
Despite this, there is still significant progress to bemade in translating these
findings into applications in clinical practice6. To address this gap, there
have been recent efforts leveraging wearable and mobile technologies24,48,49.
For instance, our previous work shed light on how increased day-to-day
variability in sleep parameters contributes to depression risk in medical
trainees during the internship, using wearable data from the same cohort of

Fig. 4 | The relationship between the CRCO-sleep misalignment level and the
PHQ-9 score. a The average CRCO-sleep misalignment level and average PHQ-9
score within each participant are positively correlated. b–gThe average CRCO-sleep
misalignment level was also positively correlated with the average scores of six
subitems from PHQ-9 questionnaires. Here, the average misalignment was com-
puted using data from two weeks before the completion of the questionnaire. The
PHQ-9 score and scores of its six subitems were binned by the average CRCO-sleep

misalignment level. Bin edges were computed every 30 min, and the mean and
standard error of the mean of scores were plotted against the midpoint of each bin.
The line and shaded region represent the best-fitted line and the corresponding 95%
confidence band, respectively, obtained by applying linear least squares regression to
the binned data. b, ρ, and p denote the beta estimate, Pearson’s correlation coeffi-
cient, and p-value, respectively. A two-tailed Wald t-test was used to compute
p-values.
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medical interns24.We also found that an increase in time awake nonlinearly
amplifies the effect of circadian rhythm on mood39. Recently, the causal
dynamics of mood and sleep/circadian phases, which are estimated from
wearable activity and sleep data, was identified26. Here, we expanded this
hypothesis by first developing wearable-based digital markers that measure
the levels of three distinct types of circadiandisruptionsusingwearableheart
rate, activity, and sleep data. We assessed their effectiveness on a larger
cohort compared to the previous study in real-world settings26. Moreover,
while the previous study solely relied on subjective mood scores, we also
utilized PHQ-9 and this allowed us to identify specific depressive symptoms
that are linkedwith circadian disruptions. Our results suggest that circadian
rhythms and sleep are inseparable processes that should be collectively
considered for accurate assessment of mental health risks.

To extract circadian rhythms from wearable activity and heart rate
data, we exploited previously proposed computational algorithms18–21,50.
These methods were validated using both experimental and in-silico data.
Specifically, our prior work showed that the CRCO estimate, obtained by
simulating amathematical model of the human circadian clock, can predict
the experimental circadian marker, dim light melatonin onset, within
approximately 1 hour18. Recently, we further refined the method by
applying aKalman filter, which optimally integratesmodel predictionswith
experimental observations, and showed that it outperforms the previous
method using in-silico wearable data20,21. We also showed that properties of
the estimated CRPO in heart closely match those of the experimentally
measured circadian rhythm inHR19,20. Thesefindings provide a rationale for
using wearable-based circadian markers in this study. Despite these vali-
dations, there is still room for further validation and improvement. Since
previous studies have focused on evaluating the predictive accuracy of the
circadian estimate for experimental markers among younger working
individuals, there is a need to assess their predictive capabilities in larger,
more diverse cohorts, including elderly adults. Additionally, given the
substantial interindividual differences in circadian parameters, such as light
sensitivity and intrinsic period17,51,52, personalizing mathematical models—
such as by employing a dual estimation approach—represents a promising
avenue for future research. We should also note that obtaining large-scale
data with DLMO—which, by itself, does not measure internal circadian
misalignment—would be challenging.

Ubiquitous consumer-grade wrist-worn wearable devices, including
the Fitbit Charge 2™ used in this study, are unable to record light levels.
Therefore, it is necessary to accurately estimateCRCOwith consumer-grade
wearable devices only collecting activity and heart rate data. Recently, we
proposed a mathematical approach using activity measurements that
accurately estimates CRCO18,20,21. Indeed, this approach improved the esti-
mation accuracy compared tomethods that rely on lightmeasurements18. A
possible reason for this improvement includes activity being associatedwith
both nonphotic circadian phase-shifting effects and light exposure18.
Another reason is that light measurements may not accurately reflect true
ocular light exposure due to factors such as individualswearing long sleeves.
Additionally, exercise is known to shift the circadian clock53,54, so higher
levels of activity may capture these effects along with increased light expo-
sure. Future research using data from various light sources (e.g., optical
lighting) could help explain the superior performance of activity
measurements.

There is increasing evidence suggesting that circadian disruption plays
a critical role in the etiology and pathophysiology of depression via direct or
indirect pathways55. Specifically, circadian disruptors (e.g., disrupted light-
dark cycles and shift work) affect both the SCNclock andother oscillators in
brain regions, such as the hippocampus, hypothalamus, and amygdala,
which are involved inmood, anxiety, feeding, andmetabolism3.This leads to
reduced neurogenesis56,57, dysregulation of metabolic hormones58,59, and
disruption of the melatonin rhythm60–62. In particular, disruption in the
melatonin rhythm affects insulin secretion rhythm63,64 or alters the CLOCK
gene expression rhythm, which is known for its genetic linkage to energetic
disorders65. As a result, individuals experiencing circadian disruption can

suffer from depressive symptoms, such as sleep-related troubles, poor
appetite, and depressedmood55. Indeed, pharmacological intervention with
melatonin has been shown to alleviate depressive symptoms in both animal
and human studies66,67. In light of these previous findings, the melatonin
rhythm appears to be an upstream factor of depressive symptoms. This
explains why the disruption in the CRCO, which is directly related to the
melatonin rhythm, was most strongly associated with a worse mood on the
following day. This also provides an explanation for the association between
disruption in the CRCO and the scores of specific questions related to sleep
and feeding from the PHQ-9 questionnaire.

While we found a strong correlation between CRCO-sleep misalign-
ment and PHQ-9 scores during the internship, no significant associations
were observed between the other two markers and PHQ-9 scores. These
findingsmay be explained by differences in the underlying physiology of the
circadian markers. Previous work has shown that an altered phase of per-
ipheral circadian rhythms does not necessarily imply a change in the phase
of central circadian rhythms31,50. Moreover, clocks respond differently to
circadian disruptors, suggesting that disruption of the peripheral heart clock
does not imply disruption of brain clocks tightly associated with depressive
symptoms. This indicates that a disrupted peripheral clock rhythm in HR
does not always imply a disrupted central clock rhythm. Thus, disruption in
the CRPO relative to sleep timing and CRCOmay not necessarily indicate
increases in CRCO-sleepmisalignment correlated with depression severity.
This could explainwhy theCRPO-sleep and internalmisalignments did not
exhibit a strong positive correlation with the PHQ-9 score.

Another notable finding is the association between CRCO-sleep mis-
alignment and the score of specific question related to suicidal risks from the
PHQ-9 questionnaire. Indeed, circadian disruption is increasingly being
considered a potential risk factor for suicide. Rodents with circadian dis-
ruptions, such as those induced by alternating light exposure patterns,
exhibited increased immobility during forced swim tests55,68. A recentmeta-
analysis further found that certain indicators of circadian or behavioral
rhythmicity are associated with suicidal thoughts and behaviors in
humans69. However, further research is needed to draw definitive conclu-
sions. Nevertheless, our approach quantifying sleep and circadian rhythm
disruptions using wearable data, which, for the first time, identified a real-
world association between circadian misalignment and suicidal thoughts,
provides a useful framework for future research.

Among our findings, of particular interest is the increasing magnitude
of the error bars in Fig. 4withhigher levels of circadianmisalignment,which
indicates greater interindividual variation in the severity of depression
symptoms among subjects with elevated circadian misalignment. Such
interindividual differences were also observed in previous laboratory
research70. Yet, the underlying molecular mechanisms driving these dif-
ferences remainunknown.Previous studieshave shown that local oscillators
in brain regions associated with depressive symptoms are linked to dis-
ruptions in the suprachiasmatic nucleus, the central clock3. This suggests
that there may be interindividual differences in downstream responses to
temporal signals from the central clock, such as those involvingmonoamine
signaling and hypothalamic-pituitary-adrenal axis hormone signaling55.
Investigating these differences would be an intriguing avenue for future
research.

We investigated the effect of shift work during the internship on the
association between circadian disruption and mental health risks by sepa-
rately analyzing data collected before and during the internship. Before the
internship, theCRPO-sleep and internalmisalignments, but not theCRCO-
sleepmisalignmentwere associatedwith aworsemoodon the followingday.
This may be explained by the rapid phase-shifting responses of a peripheral
oscillator in the heart to transient behavioral or environmental stimuli31,71,
which are expected to lead to a short-term, though not as large, effects on
mood.During the internship, CRCO-sleepmisalignmentwasmost strongly
associated with the worse next day mood among the three measures. This
suggests that if the rhythms in the central circadian clock, which are more
robust than other peripheral rhythms36,72 are disrupted, mood significantly
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worsens. Additionally, we found that, before the internship, mood was
associatedwith the next day internalmisalignment, but notwith theCRCO-
sleep or CRPO-sleep misalignments. On the other hand, during the
internship, mood was negatively correlated with all three measures. A
possible explanation would be that worsened mood and tough working
conditions (e.g., increase in work hours) synergistically deteriorate sleep
regularity, thereby disrupting the synchrony between circadian rhythms
and sleepduring the internship. Conversely,worsenedmoodmay in general
alter the feeding timing regardless of working conditions. This shifts the
peripheral oscillators away from synchrony73–75 and induces high internal
misalignment32 both before and during the internship.

The cross-lagged panel analysis provided valuable insights into the
reciprocal relationship between circadian disruption and daily mood
(SupplementaryTables 3 and 5). To further explore their casual dynamics, it
is necessary to carefully account for the complex and nonlinear dynamics of
circadian rhythms and mood19,20,76,77. For example, the autoregressive rela-
tionship between circadian markers on the current day and the subsequent
day is determined by the time propagation of nonlinear endogenous cir-
cadian rhythms, which are affected by exogenous factors such as physical
activities19,20. Approximating this nonlinear relationship as linear may lead
to inaccurate inferences about causal dynamics. To circumvent this, we can
employ recently developed models that capture the day-to-day nonlinear
dynamics of circadian rhythms andmood21,77, alongwith causality detection
methods, such as Granger causality78, convergent cross mapping79, and
transfer entropy analysis26.

Despite the strengths of our study, there are some limitations. For
instance, the cohort lacked age and racial diversity, mainly consisting of
younger and Caucasian individuals. Moreover, due to the nature of
questionnaire-based data collection, there may be sampling biases, such as
selection bias and non-response bias, which could lead to skewness of data.
Therefore, further verification of our study’s external validity needs to be
performed on other populations, such as the elderly population or clinically
diagnosed mentally disordered patients from various backgrounds. How-
ever, the effectiveness of our data collectionmobile app, the Intern App, has
been validated across various socioeconomic statuses, cultures, and geo-
graphic regions using a cohort consisting of about 500 randomly selected
healthcare workers in Nairobi, Kenya80, suggesting the potential general-
izability of our approach to studying circadian disruption andmental health
in real-life conditions. Moreover, our current study only focused on the
phase misalignments and did not consider other important circadian
parameters, such as the circadian amplitude or uncertainties in circadian
rhythms. Considering these additional circadianmeasures, alongwith other
sleep measures such as sleep onset latency and time spent in REM sleep
using wearable-based sleep scoring algorithms81,82, would also be an inter-
esting future direction. Another consideration is that subjects might
experience worsened mood during the biological night, regardless of any
circadian misalignment. To investigate this, it is necessary to separate the
potential direct impact of night shift work from the effects of circadian
misalignment. However, the current study designs, including ours, are not
suitable for this83. Therefore, further studies are needed to address this issue.
Finally, our analysis is retrospective. Thus, there still exist large gaps in
translating our current analysis into real-time monitoring of mental health
risks and development of potential intervention strategies. Extending our
current retrospective analysis to real-time analysis, for instance, by
exploiting real-time anomaly detection methods84, would be valuable
future steps.

Methods
Data collection and exclusion criteria
All analyzed datawere from the InternHealth Study, amultisite prospective
cohort study of depression among training physicians (see refs. 27,85;
https://www.internhealthstudy.org/ for more information). In this study,
the consumer-grade wrist-worn Fitbit Charge 2™ was used to continuously
collect behavioral and physiological signals from first-year training physi-
cians. Specifically, activity levels andheart rate (Fig. 1a)weremeasuredusing

the accelerometer and photoplethysmography sensor in the Fitbit Charge
2™. These measurements were then used to quantify sleep using Fitbit’s
proprietary algorithms. Summary sleepandheart ratemetricswere reported
in refs. 24,19, respectively. Examples of changes in activity levels over time
are shownas actograms in Supplementary Fig. 3.Note that the Fitbit Charge
2™ has been compared to laboratory polysomnography, showing a sensi-
tivity of 0.96 (accuracy in detecting sleep) and a specificity of 0.61 (accuracy
in detecting wake) in healthy adults86.

Using the Fitbit Charge 2™, activity, HR, and sleep data were anon-
ymously collected from 2077 medical interns. Daily mood data were col-
lected through the InternAppby sending apushnotification to participants.
Out of 2077 subjects, subjects with less than 20 days of complete heart rate,
activity, and sleep data and daily mood score were removed from the ana-
lysis due to the necessity of having sufficiently long data records to perform
the statistical analysis20,21. We also required the number of minute-by-
minute heart rate, activity, and sleep data measurements to be greater than
20 counts per day, since sufficient data points are needed to ensure accurate
analysis. Consequently, 833 subjects were included in the daily mood ana-
lysis. See Supplementary Fig. 1 for further details on subject exclusion
criteria.

Depression data were collected with the PHQ-9, a self-administered
tool used to help screen, diagnose, and measure the severity of depression.
See24 for details of the collection of mood and depression data. For the
analysis of depression data, 162 subjects who either did not complete the
PHQ-9 questionnaire or had less than 10 days’ worth of valid heart rate,
activity, and sleep data within the two weeks prior to the completion of the
questionnairewere further excluded.A total of 671 subjectswere included in
the during-internship analysis of PHQ-9 data. Likewise, 206 additional
subjects who did not complete the baseline PHQ-9 questionnaire before
beginning the internshipwere removed from the before-internship analysis.
A total of 465 subjects were included in the before-internship analysis of
PHQ-9 data. This study was approved by the University of Michigan IRB
and all subjects provided informed consent after receiving complete
description of the study.

Estimation of circadian rhythms
Weestimated the circadian biomarkers using threemethods: (i) a regression
approach to measure the phase of CRPO in HR from wearable heart rate,
activity, and sleep data20, (ii) an approach to predict the phase of CRCO
solely using a mathematical model of the circadian clock, with wearable
activity and sleep data as inputs18, and (iii) an advanced Kalman filtering
approach that assimilates the two phase estimates obtained using the pre-
vious two methods20,21. Note that the third method was employed to esti-
mate the CRCO in all figures except for Supplementary Fig. 9. In
Supplementary Fig. 9, the second method was used. Below, we provide
detailed descriptions for each method.

A method for estimating the circadian rhythm in the peripheral
oscillator in the heart (CRPO)
To estimate the CRPO, we adopted the nonlinear curve-fitting approach,
which has been validated against a large-scale wearable dataset, from20. It
assumes that heart rate (HR) consists of a 24 h periodic oscillation, plus a
separate term to account for the effect of physical activities on HR. This
yields a model for HR:

HRt ¼ a� b � cos π

12
t � HRminð Þ

� �
þ d � Activityt þ vt ð1Þ

where a is the basal HR in beats per minute (bpm), b is the amplitude of a
circadian oscillation in HR, HRmin is the time of the circadian HR mini-
mum, d is the increase in HR per unit of activity, and vt is the model error.
This error vt follows the first-order autoregressive noise process model (i.e.,
vtþ1 ¼ α � vt þ N 0; σ2

� �� �
. That is, a fraction α of the noise at time t is

carried over at time t þ 1, and σ is independent measurement noise or new
external influences. The values for HR and activity come from the wearable
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dataset. For each individual, the model parameters, including HRmin, are
fitted directly from the data by using an approximation-based nonlinear
least-squares method20,87. We denote the estimated HRmin on day i as
CRPOi. The previous day’s fit is used as an initial condition to estimate the
parameters on the successive day, and this enables the estimation of both
meananduncertainty for eachparameter.Moredetails of themethodcanbe
found in ref.20 and the codes to run this algorithm are openly available at
https://github.com/daewookk/ALSM.

A method for predicting the circadian rhythm in the central
oscillator (CRCO) solely using the limit-cycle oscillator model of
the circadian clock
We adopted a limit-cycle oscillator model of the human central circadian
clock,whichhas been validated againstmultiple laboratory andfield studies,
to estimate the CRCO18,35. Note that this method solely based on the
mathematical model was used only for Supplementary Fig. 9, while the
CRCO phase estimates in other figures were obtained from the recently
developed data assimilation method described below. The limit-cycle
oscillator model describes the effect of external factors, such as light or
activity, on the human circadian pacemaker:

dx
dt

¼ π

12
xc þ B
� � ð2Þ

dxc
dt

¼ π

12
μ xc �

4
3
x3c

� �
� x

24
0:99669τx

� �2

þ kB

( )" #
ð3Þ

dn
dt

¼ 60 α Ið Þ 1� nð Þ � βn
� � ð4Þ

where α Ið Þ ¼ α0
I
I0

� �P
, B ¼ B̂ 1� 0:4xð Þ 1� 0:4xc

� �
, B̂ ¼ Gα Ið Þ 1� nð Þ,

μ ¼ 0:23, τx ¼ 24:2, k ¼ 0:55, β ¼ 0:013, α0 ¼ 0:16, P ¼ 0:6, and
I0 ¼ 9500. The first two equations explain a limit-cycle oscillator for x and
xc, where the variable x describes endogenous circadian rhythms and xc
serves as a mathematically necessary complementary variable essential for
achieving the limit cycle.

The method takes light or activity wearable data as the model
input to simulate the differential equations. In this study, we used
wearable activity data, as done in previous work18, to generate the
results in Supplementary Fig. 9. For further details, see ref. 18. The
codes for implementing the model are available at https://github.
com/pepperhuang/predictCircadianRhythms.

A data assimilation method for estimating the CRCO
Themethod described earlier does not utilize information about the CRPO
when predicting the CRCO. This might overlook the potential for more
accurate estimation of the CRCO, as all circadian clocks are interconnected
via hormonal andneuronal signals, suggesting that theCRPOholds indirect
information about theCRCO.To tackle this issue, a statisticalmethod based
on a Kalman filter was recently proposed21. Specifically, this method cap-
tures the hierarchical nature of the circadian timekeeping system by inte-
grating the CRCO phase estimates obtained from the mathematical model
of thehumancircadian clock18,35 with theCRPOphase estimate20, as detailed
in the previous two sections. This can be formulated as the filtering problem
of a continuous-discrete system described as

dxt ¼ v xt; t
� �

dt þ
ffiffiffiffi
K

p
dWt ð5Þ

zi ¼ h xti

� �
þ ϵi ð6Þ

where xt represents the state of the circadian clock at time t under the
dynamics described by the drift velocity v;Wt is the standard n-dimensional
Brownian motion; K denotes the diffusion matrix; zi represents the
measured peripheral clock phase on day i; h is the measurement function

relating the estimated phase of the central and peripheral circadian clocks
based on previously proposed phase angle difference; and ϵi is the Gaussian
noise describing the error in the measurement of the peripheral circadian
clock phase.

We let the state variable xt and drift velocity v be defined as in the van
der Pol type limit-cycle oscillatormodel as described in the previous section.
In particular, we define

xt ¼ x; xc; n
	 
0 ð7Þ

v xt; t
� � ¼ dx

dt
;
dxc
dt

;
dn
dt

� �0
ð8Þ

The detailed expressions for the differential equations are given as

dx
dt

¼ π

12
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� � ð9Þ

dxc
dt

¼ π

12
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4
3
x3c

� �
� x

24
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þ kB

( )" #
ð10Þ

dn
dt

¼ 60 α Ið Þ 1� nð Þ � βn
� � ð11Þ

where the parameter values are specified in the previous section.
Here,we set zi as theHRminonday i (CRPOi). Toobtain theCRPOi, we

used the approximation-based nonlinear least-squares method described
above. The measurement function h relates the CRPOi to the central clock
state at the time of the circadian xminimum on day i, denoted by xCRCOi

, as
follows:

CRPOi ¼ h xCRCOi

� �
þ ϵi ¼ CRCOi þ ϕref þ ϵi ð12Þ

where CRCOi is the value such that E xCRCOi

h i
≤ E xt

	 

for all

t 2 24 � i� 1ð Þ; 24 � i½ �, and ϕref ¼ �1 represents the average phase angle

difference reported in previous work19,35,37. Note that the symbol E xt
	 


denotes the expectation of the random variable xt .
We solved the filtering problem by employing a recently introduced

extension of Kalman filtering called the level-set Kalman filter88, which was
also utilized in prior research21. This approach enabled us to derive the
CRCO phase estimate, denoted by CRCOiji, using wearable heart rate,
activity, and sleep data collected up to day i. This estimate was used to
produce the results in all figures except Supplementary Fig. 9. For further
details about this data assimilation approach and its implementation, see
refs. 20 and21. The codes for implementing the method are available at
https://github.com/phillee62/LSKF_circadian.

Assessment of circadian disruption markers, daily mood, and
depressive symptoms
The level of misalignment between a circadian rhythm and the sleep-wake
cyclewas defined as the differencebetween the circadianphase and the sleep
midpoint, following previous work19. CRCO-sleep misalignment was
computed as the absolute difference between the CRCOphase estimated by
thedata assimilationmethod20,21 and the sleepmidpoint, taking into account
that the CRCO phase occurs approximately 1 hour after the sleepmidpoint
for humans under normal conditions18,21,35. Specifically, based on this phase
relation between CRCO phase and sleep midpoint, the CRCO-sleep mis-
alignment on a given day was calculated as jðCRCOþ ϕref Þ �
sleep midpointj hours where ϕref ¼ �1 is the reference angle. The CRPO-
sleep misalignment was similarly computed as jCRPO� sleep midpointj
hours based on previous results that CRPO phase and sleepmidpoint occur
around the same time under normal conditions19,20.

https://doi.org/10.1038/s41746-024-01348-6 Article

npj Digital Medicine |           (2024) 7:355 10



The internal misalignment is a statistical measure computed using the
Kalman filtering approach20,21. Specifically, the internal misalignment on a
given day i, ξi, was defined as the absolute difference between the CRCO
phase predicted usingwearable data until day i - 1,CRCOi|i−1, and the actual
CRPO phase on day i, CRPOi, scaled by the standard deviation σi|i−1 we
would expect in this measurement, i.e., the log-likelihood value ξi of the
absolute difference between CRCOi|i−1 + ϕref and CRPOi. See

89 for details.

ξi ¼
jðCRCOiji�1 þ ϕref Þ � CRPOij

σ iji�1
ð13Þ

Daily mood was evaluated and quantified by the response to the fol-
lowing question: “On a scale of 1 (lowest) to 10 (highest), how was your
mood today?”90 Depressive symptoms were evaluated with the PHQ-9. For
each of the nine depressive symptoms outlined in the Diagnostic and Sta-
tisticalManual ofMentalDisorders (DSM-5), study participantswere asked
about the frequency of these symptoms over the past two weeks, ranging
from “not at all” to “nearly everyday.”Eachsymptomcorresponds toa score
of 0–3, resulting in a total score ranging from 0 to 27. To assess the PHQ-9
scores, quarterly evaluations were performed.

Circadian disruption measures were estimated from wearable data
collected throughout the day20,21, whilemoodwas assessed every evening via
a mobile app24. Thus, both circadian disruption measures and mood were
sampled once daily. In Fig. 2, each measure estimated on day i was paired
with the corresponding mood score assessed on day iþ 1. The next day
mood scores were binned by each circadian disruption measure, with the
bin size of 1 hour. In Fig. 3, each mood score assessed on day i was paired
with the corresponding circadian disruption measures estimated on day
iþ 1. The next day measures were binned by the corresponding mood
score, with the bin size of 0.5.

Generalized estimating equation analyses
To investigate the association between current day circadian disruption
measures and next day daily mood after adjusting for repeated measures
from the same subject and demographic and geographic variables, we
applied GEEs with an exchangeable correlation structure, a widely used
statistical technique for analyzing longitudinal and correlated data91. Spe-
cifically, using data obtained either before or after the internship began, we
conducted GEE analyses with the following generalized linear model:

Moodiþ1;j ¼ β0 þ β1 � Disruptioni;j þ β2 � agej
þ β3 � sexj þ β4 � racej þ β5 � timezonej

ð14Þ

whereMoodiþ1;j represents thedailymoodz-scoreonday iþ 1 for subject j,
Disruptioni;j represents the CRCO-sleep misalignment, CRPO-sleep
misalignment, or internal misalignment on day i for subject j, and β’s
represent the regression coefficients. In these analyses, we assumed a
Gaussian family distribution and that the measurements from different
subjects were independent. GEEs provide robust standard errors, making
them less sensitive to misspecification of the correlation structure92.

We next investigated the association between current day daily mood
and next day circadian disruption markers by conducting GEE analyses
using data obtained either before or after the internship began with the
following generalized linear model:

Disruptioniþ1;j ¼ β0 þ β1 �Moodi;j þ β2 � agej þ β3 � sexj
þ β4 � racej þ β5 � timezonej

ð15Þ

The estimated values of β1, which represent the relationship between
circadian disruption measures and daily mood, along with their 95% con-
fidence intervals and respective p-values, are reported in Figs. 2g and 3g, and
Table 1. All the GEE analyses were implemented using the Python ‘stats-
model’ package in Python 3.10.12.

Linear mixed-effects modeling analyses
To investigate the association between current day circadian disruption
markers and next day daily mood after adjusting for random effects of
demographic and geographic variables and repeated measures, we applied
LMEs, a widely used statistical technique for analyzing data that are mul-
tilevel, longitudinal, or correlated93. Unlike in GEE analyses, where we
modeled the demographic and geographic variables as fixed effects, we
considered the demographic and geographic variables and repeated mea-
sures as random effects. Specifically, we conducted LME analyses using data
obtained either before or after the internship began with the following
crossed-random effect model:

Moodiþ1;j ¼ β0 þ β1 � Disruptioni;j þ γ0 � agej þ γ1 � sexj þ γ2 � racej
þ γ3 � timezonej þ uj

ð16Þ

whereMoodiþ1;j represents thedailymoodz-scoreonday iþ 1 for subject j,
Disruptioni;j represents the CRCO-sleep misalignment, CRPO-sleep
misalignment, or internal misalignment on day i for subject j, β’s and γ's
represent the fixed and random effects, respectively, and uj represents the
random effect of repeatedmeasures within subject j (i.e., the subject-specific
random effect). The association between current day mood and next day
disruption was analogously investigated with the following model:

Disruptioniþ1;j ¼ β0 þ β1 �Moodi;j þ γ0 � agej þ γ1 � sexj þ γ2 � racej
þ γ3 � timezonej þ uj

ð17Þ

Similarly, we analyzed the association between circadian disruption
and PHQ-9 scores before and during the internship using the following
model:

PHQj ¼ β0 þ β1 � Disruptionj þ γ0 � agej þ γ1 � sexj
þ γ2 � racej þ γ3 � timezonej

ð18Þ

wherePHQj represents thePHQ-9 score for subject j,Disruptionj represents
the CRCO-sleep misalignment, CRPO-sleep misalignment, or internal
misalignment for subject j averagedover the twoweeks preceding the PHQ-
9 assessment. Note that PHQ-9 scores were evaluated only once before the
internship, so there were no repeated measures at that time. Additionally,
since we averaged each subject’s PHQ-9 scores across their individual
quarterly questionnaire submissions throughout the internship, there were
no repeatedmeasures within that period either. Thus, themodel for PHQ-9
scores did not include a term for the random effect of repeated measures.
The samemodelwas applied to investigate the association between scores of
individual subitems from PHQ-9 questionnaires and circadian disruption.
The estimated values of β’s, which represent the relationship between
circadian disruption measures and daily mood and depressive severity,
along with their 95% confidence intervals and respective p-values, are
reported in Figs. 2h and 3h, Table 2, and Supplementary Table 7. All the
LME analyses were implemented using the Python ‘statsmodel’ package in
Python 3.10.12, with the lbfgs optimizer employed to maximize the log-
likelihood of the parameter estimates.

Cross-lagged panel analyses that describe reciprocal relation-
ships between circadian disruption measures and daily mood
We conducted regression analyses using a cross-lagged panel modeling
approach that assesses the reciprocal relationship between circadian dis-
ruption and daily mood94. Specifically, we analyzed data collected either
before or during the internship using a cross-lagged panel model that
estimates fixed autoregressive, cross-lagged, and synchronous correlation
effects of one variable on another, while adjusting for random effects due to
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demographic and geographic variables (Supplementary Fig. 6):

Moodiþ1;j ¼ β10 þ β11 �Moodi;j þ β12 � Disruptioni;j þ β13 � Disruptioniþ1;j

þ γ11 � agej þ γ12 � sexj þ γ13 � racej þ γ14 � timezonej þ u1j

ð19Þ

Disruptioniþ1;j ¼ β20 þ β21 � Disruptioni;j þ β22 �Moodi;j þ β23 �Moodiþ1;j

þ γ21 � agej þ γ22 � sexj þ γ23 � racej þ γ24 � timezonej þ u2j

ð20Þ

where Moodi;j represents the daily mood z-score on day i for subject j,
Disruptioni;j represents the CRCO-sleep misalignment, CRPO-sleep
misalignment, or internal misalignment on day i for subject j, β’s and γ's
represent the fixed and random effects, respectively, and u’s represent the
random effect of repeated measures within subject j. Note that β11 and β21
represents autoregressive effects, β12 and β22 represents cross-lagged effects,
and β13 and β23 represents synchronous correlation effects. The estimated
values of β’s, along with their 95% confidence intervals and respective p-
values, are reported in Supplementary Table 3 and 5. All the cross-lagged
panel analyses were implemented using the Python ‘statsmodel’ package in
Python 3.10.12.

Linearmixed-effectsmodelinganalyses that account for all three
circadian disruption measures
We conducted regression analyses using a linear mixed-effects modeling
approach that accounts for correlations between circadian disruption
measures, repeated measures from the same subject, and demographic and
geographic variables while estimating the overall influence of the predictor
of interest93. Specifically, we analyzed data obtained either before or during
the internship using a linear mixed-effects model that estimates the fixed
effect of one circadian disruptionmeasure on next day mood across groups
with varying levels of the other two circadian disruption measures, while
adjusting for random effects from these measures to capture variability
among groups:

Moodiþ1;j ¼ β0 þ β1 � Disruption1i;j þ γ0 � Disruption2i;j þ γ1 � Disruption3i;j
þ γ2 � agej þ γ3 � sexj þ γ4 � racej þ γ5 � timezonej þ uj

ð21Þ

whereMoodiþ1;j represents thedailymoodz-scoreonday iþ 1 for subject j,
Disruption1i;j represents one circadian measure considered as an
independent variable, Disruption2i;j and Disruption3i;j represent the other
two measures considered as covariates, β’s and γ's represent the fixed and
randomeffects, respectively, anduj represents the randomeffect of repeated
measures within subject j (i.e., the subject-specific random effect). For
example, if CRCO-sleep misalignment is chosen as the independent
variable, Disruption1i;j, then CRPO-sleep and internal misalignments are
considered as covariates, Disruption2i;j and Disruption3i;j.

Similarly, we analyzed the association between CRCO-sleep mis-
alignment and PHQ-9 scores before and during the internship using the
following model:

PHQj ¼ β0 þ β1 � CRCOj þ γ0 � CRPOj þ γ1 � Internalj þ γ2 � agej
þ γ3 � sexj þ γ4 � racej þ γ5 � timezonej

ð22Þ
where CRCOj, CRPOj, and Internalj represent CRCO-sleep misalignment,
CRPO-sleepmisalignment, and internalmisalignment for subject j averaged
over the two weeks preceding the PHQ-9 assessment, respectively. The
estimated values of β1, which represent the relationship between circadian
disruption measures and daily mood and depressive severity, along with
their 95% confidence intervals and respective p-values, are reported in
Supplementary Table 4 and 8. All the LME analyses were implemented
using the Python ‘statsmodel’ package in Python 3.10.12, with the lbfgs

optimizer employed to maximize the log-likelihood of the parameter
estimates.

Statistical analysis
Two-tailed t-test and linear least-square regression analysis were performed
using the Python SciPy package to determine statistical significance. The
beta value, Pearson’s correlation coefficient, and p-value were calculated as
part of least-square regression. Detailed descriptions of these tests, along
with the relevant parameters, can be found in the main text, figures, and
figure legends.

Multiple test corrections were applied using the two-stage linear step-
up procedure, implemented with Python’s MultiPy package41. In the daily
mood analysis (Figs. 2 and 3), these corrections were applied to the p-values
obtained by comparing CRCO-sleep, CRPO-sleep, and internal misalign-
ment with the daily mood score. In the PHQ-9 analysis (Fig. 4), the cor-
rections were applied to the p-values obtained by comparing CRCO-sleep
misalignmentwith scores of the nine PHQ-9 subitems.A p-value < 0.05was
considered statistically significant.All dataprocessing and statistical analysis
were completed using Python 3.10.12.

Data availability
The de-identified data from Intern Health Study that supports our findings
are available from the corresponding author upon reasonable request.

Code availability
Code for data processing and statistical analysis is available on (https://
github.com/phillee62/Digitial_circadian_disruption_markers).
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